Lösning 2.6:9
FörberedandeFysik
| Rad 1: | Rad 1: | ||
| - | <math>l=1,  | + | <math> l = 1,0\, \textrm{m};\quad mg = 39,3\, \textrm{N}; </math>  | 
| + | <math> \cos{\alpha} = 3/5;\quad \sin{\alpha} = 4/5 </math>  | ||
| - | + | Momentjämvikt kring kontaktpunkten mellan stången och golvet ger:   | |
| + | <math> N_A \cdot 5l - mg \cdot 3l\cos{\alpha} = 0 </math>  | ||
| + | <math> N_A = \frac{3}{5}mg\cos{\alpha} = \frac{9}{25}mg = 14,1\, \textrm{N} </math>  | ||
| - | + | Kraftjämvikt horisontellt ger:  | |
| - | <math>N_A\  | + | <math> f = N_A\sin{\alpha} = \frac{9}{25} mg\sin{\alpha} = 14,1 \cdot \frac{4}{5} = 11,3\, \textrm{N} </math>   | 
| - | + | Kraftjämvikt i vertikal led ger:  | |
| - | + | <math> N - mg + N_A\cos{\alpha} = 0 </math>   | |
| - | + | <math> N = mg-N_A\cos{\alpha} = mg -\frac{9}{25}mg \cdot \frac{3}{5} = \frac{98}{125}mg = 30,8\, \textrm{N} </math>  | |
| - | + | <math> {\mu} = \frac{f}{N} = \frac{11,3\, \textrm{N}}{30,8\, \textrm{N}} = 0,37 </math>  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>N-mg+N_A\cos\alpha =0</math>  | + | |
| - | + | ||
| - | <math>N=mg-N_A\cos\alpha =mg-\frac{9}{25}mg\cdot \frac{3}{5}=\frac{98}{125}mg=30,  | + | |
| - | + | ||
| - | <math>\mu =\frac{f}{N}=\frac{11,  | + | |
Nuvarande version
\displaystyle l = 1,0\, \textrm{m};\quad mg = 39,3\, \textrm{N}; \displaystyle \cos{\alpha} = 3/5;\quad \sin{\alpha} = 4/5
Momentjämvikt kring kontaktpunkten mellan stången och golvet ger:
\displaystyle N_A \cdot 5l - mg \cdot 3l\cos{\alpha} = 0 \displaystyle N_A = \frac{3}{5}mg\cos{\alpha} = \frac{9}{25}mg = 14,1\, \textrm{N}
Kraftjämvikt horisontellt ger:
\displaystyle f = N_A\sin{\alpha} = \frac{9}{25} mg\sin{\alpha} = 14,1 \cdot \frac{4}{5} = 11,3\, \textrm{N}
Kraftjämvikt i vertikal led ger:
\displaystyle N - mg + N_A\cos{\alpha} = 0 \displaystyle N = mg-N_A\cos{\alpha} = mg -\frac{9}{25}mg \cdot \frac{3}{5} = \frac{98}{125}mg = 30,8\, \textrm{N} \displaystyle {\mu} = \frac{f}{N} = \frac{11,3\, \textrm{N}}{30,8\, \textrm{N}} = 0,37
