2.2 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Zeile 12: Zeile 12:
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="100%"|<math>\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad</math> by using the substitution <math>u=3x-1</math>,
+
|width="100%"|<math>\displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad</math> durch die Substitution <math>u=3x-1</math>,
|-
|-
|b)
|b)
-
|width="100%"| <math>\displaystyle \int (x^2+3)^5x \, dx\quad</math> by using the substitution <math>u=x^2+3</math>,
+
|width="100%"| <math>\displaystyle \int (x^2+3)^5x \, dx\quad</math> durch die Substitution <math>u=x^2+3</math>,
|-
|-
|c)
|c)
-
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> by using the substitution <math>u=x^3</math>.
+
|width="100%"| <math>\displaystyle \int x^2 e^{x^3} \, dx\quad</math> durch die Substitution <math>u=x^3</math>.
|}
|}
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:1|Lösung a|Lösung 2.2:1a|Lösung b|Lösung 2.2:1b|Lösung c|Lösung 2.2:1c}}
</div>{{#NAVCONTENT:Antwort|Antwort 2.2:1|Lösung a|Lösung 2.2:1a|Lösung b|Lösung 2.2:1b|Lösung c|Lösung 2.2:1c}}

Version vom 12:45, 5. Mai 2009

       Theorie          Übungen      

Übung 2.2:1

Berechnen Sie die Integrale

a) \displaystyle \displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad durch die Substitution \displaystyle u=3x-1,
b) \displaystyle \displaystyle \int (x^2+3)^5x \, dx\quad durch die Substitution \displaystyle u=x^2+3,
c) \displaystyle \displaystyle \int x^2 e^{x^3} \, dx\quad durch die Substitution \displaystyle u=x^3.

Übung 2.2:2

Berechnen Sie die Integrale

a) \displaystyle \displaystyle\int_{0}^{\pi} \cos 5x\, dx b) \displaystyle \displaystyle\int_{0}^{1/2} e^{2x+3}\, dx
c) \displaystyle \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx d) \displaystyle \displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx

Übung 2.2:3

Berechnen Sie die Integrale

a) \displaystyle \displaystyle\int 2x \sin x^2\, dx b) \displaystyle \displaystyle\int \sin x \cos x\, dx
c) \displaystyle \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx d) \displaystyle \displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx
e) \displaystyle \displaystyle\int \displaystyle\frac{3x}{x^2+1}\, dx f) \displaystyle \displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx

Übung 2.2:4

Verwenden Sie die Formel

\displaystyle \int \frac{dx}{x^2+1} = \arctan x + C

um die Integrale zu berechnen

a) \displaystyle \displaystyle\int \frac{dx}{x^2+4} b) \displaystyle \displaystyle\int \frac{dx}{(x-1)^2+3}
c) \displaystyle \displaystyle\int \frac{dx}{x^2+4x+8} d) \displaystyle \displaystyle\int \frac{x^2}{x^2 +1}\, dx