2.2 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
			  			                                                      
		          
			| K  (Robot: Automated text replacement  (-Selected tab +Gewählter Tab)) | K  (Robot: Automated text replacement  (-Not selected tab +Nicht gewählter Tab)) | ||
| Zeile 2: | Zeile 2: | ||
| {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| | style="border-bottom:1px solid #000" width="5px" |   | | style="border-bottom:1px solid #000" width="5px" |   | ||
| - | {{ | + | {{Nicht gewählter Tab|[[2.2 Integration durch Substitution|Theorie]]}} | 
| {{Gewählter Tab|[[2.2 Übungen|Übungen]]}} | {{Gewählter Tab|[[2.2 Übungen|Übungen]]}} | ||
| | style="border-bottom:1px solid #000"  width="100%"|   | | style="border-bottom:1px solid #000"  width="100%"|   | ||
Version vom 13:42, 10. Mär. 2009
| Theorie | Übungen | 
Übung 2.2:1
Calculate the integrals
| a) | \displaystyle \displaystyle \int_{1}^{2} \displaystyle\frac{dx}{(3x-1)^4}\quad by using the substitution \displaystyle u=3x-1, | 
| b) | \displaystyle \displaystyle \int (x^2+3)^5x \, dx\quad by using the substitution \displaystyle u=x^2+3, | 
| c) | \displaystyle \displaystyle \int x^2 e^{x^3} \, dx\quad by using the substitution \displaystyle u=x^3. | 
Übung 2.2:2
Calculate the integrals
| a) | \displaystyle \displaystyle\int_{0}^{\pi} \cos 5x\, dx | b) | \displaystyle \displaystyle\int_{0}^{1/2} e^{2x+3}\, dx | 
| c) | \displaystyle \displaystyle\int_{0}^{5} \sqrt{3x + 1} \, dx | d) | \displaystyle \displaystyle\int_{0}^{1} \sqrt[\scriptstyle3]{1 - x}\, dx | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Übung 2.2:3
Calculate the integrals
| a) | \displaystyle \displaystyle\int 2x \sin x^2\, dx | b) | \displaystyle \displaystyle\int \sin x \cos x\, dx | 
| c) | \displaystyle \displaystyle\int \displaystyle\frac{\ln x}{x}\, dx | d) | \displaystyle \displaystyle\int \displaystyle\frac{x+1}{x^2+2x+2}\, dx | 
| e) | \displaystyle \displaystyle\int \displaystyle\frac{3x}{x^2+1}\, dx | f) | \displaystyle \displaystyle\int \displaystyle\frac{\sin \sqrt{x}}{\sqrt{x}}\, dx | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
Lösung e
Lösung f
Übung 2.2:4
Use the formula
to calculate the integrals
| a) | \displaystyle \displaystyle\int \frac{dx}{x^2+4} | b) | \displaystyle \displaystyle\int \frac{dx}{(x-1)^2+3} | 
| c) | \displaystyle \displaystyle\int \frac{dx}{x^2+4x+8} | d) | \displaystyle \displaystyle\int \frac{x^2}{x^2 +1}\, dx | 
Antwort
Lösung a
Lösung b
Lösung c
Lösung d
 
		   Laden...
  Laden...