Slaskövning11
SamverkanLinalgLIU
Innehåll |
Övning 11.1
Avgör vilka av följande mängder är linjära rum.
a) \displaystyle M_1=\{ alla polynom av grad exakt \displaystyle =4\ \} .
b) \displaystyle M_2=\{ alla \displaystyle 3\times3 matriser med reella element\displaystyle \ \} .
c) \displaystyle M_3=\{ alla reella funktioner definerade på\displaystyle [-1,1]\ \} .
d) \displaystyle M_4=\{ alla reella funktioner \displaystyle f definerade på \displaystyle [0,2] sådana att \displaystyle f(1)=1\ \} .
e) \displaystyle M_5=\{ alla reella funktioner \displaystyle f definerade på \displaystyle [0,2] sådana att \displaystyle f(1)=0\ \} .
Övning 11.2
Vilka av följande mängder är underrum i \displaystyle {\bf R}^3 ?
a) \displaystyle M_1=\{ \boldsymbol{x} \in {\bf R}^3:\ x_1-2x_2+3x_3=0\}
b) \displaystyle M_2=\{ \boldsymbol{x} \in {\bf R}^3:\ x_1-2x_2+3x_3=1\}
c) \displaystyle M_3=\{ \boldsymbol{x} \in {\bf R}^3:\ x_1-2x_2+3x_3=0\quad\mbox{och}\quad x_2-x_3=0\}
d) \displaystyle M_4=\{ \boldsymbol{x} \in {\bf R}^3:\ x_1=0\quad\mbox{eller}\quad x_2=0\}
Övning 11.3
Betrakta mängden \displaystyle M=\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}\subset{\bf R}^4 , där \displaystyle \boldsymbol{v}_1=(1,1,1,1)^t , \displaystyle \boldsymbol{v}_2=(1,-1,1,-1)^t och \displaystyle \boldsymbol{v}_3=(1,1,-1,-1)^t .
a) Undersök om \displaystyle (6,2,0,-4)^t är en linjärkombination i \displaystyle M .
b) Undersök om \displaystyle (6,2,0,-3)^t tillhör linjära höljet \displaystyle [M] .
Övning 11.4
Låt \displaystyle M vara mängden i Övning 11.3 och låt \displaystyle U=[M] vara linjära höljet för \displaystyle M , dvs \displaystyle U är mängden av alla linjära kombinationer i \displaystyle M .
a) Ange en ekvation \displaystyle U . Vad kallas den geometriska tolkningen av \displaystyle U .
b) Visa att \displaystyle U är ett underrum.
c) Bestäm alla vektorer som inte ligger i \displaystyle U .
Övning 11.5
Låt
V=[(1,0,0,-1)^t,(0,1,-1,0)^t,(1,1,0,0)^t]
och
W=[(1,0,0,-1)^t,(0,1,-1,0)^t,(1,0,0,1)^t].
a) Ange en ekvation för \displaystyle V resp. \displaystyle W .
b) Låt mängden \displaystyle U vara som i Övning 10.4. Bestäm snittmängden \displaystyle U\cap V , dvs mängden av alla gemensamma vektorer som ligger i både \displaystyle U och \displaystyle V . Bestäm också \displaystyle U\cap W .
Övning 11.6
Visa att vektorerna
\boldsymbol{v}_1=(1,0,1,4)^t,\quad\boldsymbol{v}_2=(2,2,0,0)^t,\quad\boldsymbol{v}_3=(3,1,0,2)^t,\quad\boldsymbol{v}_4=(4,1,1,6)^t
i \displaystyle {\bf R}^4 är linjärt beroende. Skriv \displaystyle \boldsymbol{v}_3 som en linjärkombination av \displaystyle \boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_4 . Kan \displaystyle \boldsymbol{v}_2 skrivas som en linjärkombination av \displaystyle \boldsymbol{v}_1,\boldsymbol{v}_3,\boldsymbol{v}_4 ?