Förberedande kurs i matematik
Övning 1
Beräkna
a)
| (−3)(7+(−5)(−3+2))
| b)
| (−a+2b)(−a+3b)
|
|
Svar 1.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 2
Svar 1.2
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.2.1
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.2.2
Hur många äkta delare har 23?
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.4.1
a)
| Beräkna 38800 5 modulo 3.
| b)
| Beräkna entalssiffran i talet 37120.
|
|
Svar 1.4
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.4.2
a)
| Ett tal är jämnt delbart med två precis då dess entalssiffra är delbar med två. Bevisa detta med hjälp av moduloräkning.
| b)
| Ett heltals siffersumma är summan av siffrorna i talet. Till exempel är siffersumman av 354 lika med 3+5+4=12.Ett tal är jämnt delbart med tre precis då dess siffersumma är jämnt delbar med tre. Bevisa detta med hjälp av moduloräkning.
|
|
Svar 1.42
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.4.3
a)
| Ett tal är jämnt delbart med 5 precis då dess entalssiffra antingen är 0 eller 5. Bevisa detta med hjälp av moduloräkning.
| b)
| En alternerande siffersumma för ett tal är summan av siffrorna med växlande tecken. Till exempel är siffersumman hos 35478 lika med 3−5+4−7+8=−1. Ett tal är jämnt delbart med 11 precis då dess alternerande siffersumma är delbar med 11. Bevisa detta med hjälp av moduloräkning.
|
|
Svar 1.43
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
{Moduloräkning}
Övning 1.5.1
Svar 1.5.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.8.1
Förenkla (1+i)2012−(1−i)2012
|
|
Svar 1.8.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 1.8.2
Antag att vi definierar en sekvens av komplexa tal genom z1=0
och zn+1=zn2+i för n 1. Hur långt från origo kommer då z111 befinna sig? (Källa: AHSME)
|
|
Svar 1.8.2
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 2.1
Svar 2.1.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 3.5.1
Gäller Pythagoras sats för trianglar ritade på en sfär?
|
|
Svar 3.5.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.2.1
Antag att vi får använda att
D(x)=1 utan bevis.
a)
| Visa att D(x2)=2x med hjälp av produktregeln.
| b)
| Visa att D(xn)=nxn−1 om vi antar att man vet D(xn−1)=(n−1)xn−2.
| c)
| Med hjälp av b), visa att D(xn)=nxn−1 för alla n.
|
|
Svar 4.2.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3.1
a)
| Visa att −ln(cosx) är en primitiv funktion till \displaystyle \sin x/\cos x.
| b)
| Visa att \displaystyle x\ln(x) -x är en primitiv funktion till \displaystyle \ln (x).
|
|
|
Svar 4.3.1
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3.2
Antag att vi har två deriverbara funktioner f och g så att f(x)=0 för alla x.
a)
| Skriv upp en formel för derivatan av \displaystyle f(x)^{g(x)} uttryckt i \displaystyle D(f(x)) och \displaystyle D(g(x)).
| b)
| Tillämpa formeln genom att derivera \displaystyle (x^2+1)^3.
| c)
| Derivera \displaystyle x^x då \displaystyle x>0.
| d)
| Derivera \displaystyle x^{\sin x} då \displaystyle x>0.
|
|
Svar 4.3.2
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Övning 4.3.3
a)
| Derivera \displaystyle \sin x /x.
| b)
| Derivera \displaystyle \sin^3x + 3\sin x \cos x.
|
|
|
Svar 4.3.3
Hämtar...
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt
Visa mindreVisa mindre |
Visa merVisa mer |
Dölj alltDölj allt |
Visa alltVisa allt