Lösning 4.2.1.c

Förberedande kurs i matematik

Hoppa till: navigering, sök

Skriv \displaystyle x^n=x\cdot x^{n-1}. Vi får \displaystyle D(x^n)= D(x\cdot x^{n-1}) = D(x)\cdot x^{n-1} + xD(\cdot x^{n-1})= 1\cdot x^{n-1} + x(n-1)x^{n-2} = nx^{n-1}. c) Till att börja med vet vi att \displaystyle D(x^1) =1. Deluppgift b) säger då att \displaystyle D(x^2)=2x. Det var alltså det vi visade i a). Om vi använder b) igen får vi \displaystyle D(x^3)=3x^2 och ytterligare en gång \displaystyle D(x^4)=4x^3. Vi ser att det går att fortsätta såhär så länge vi vill och vi ser då att \displaystyle D(x^n)= nx^{n-1}. Denna bevismetod kallas induktion.