2.1 Linjärkombination
SamverkanLinalgLIU
2.1 | 2.2 | 2.3 |
Läs textavsnitt 2.1 Linjärkombination.
Du har nu läst definitionen på linjärkombination och här kommer några övningar som testar om du har tagit till dig stoffet.
Innehåll |
Övning 3.1
Vi vet att \displaystyle |\boldsymbol{u}|=3, \displaystyle |\boldsymbol{v}|=4 och \displaystyle |\boldsymbol{u-v}|=5. Beräkna skalärprodukten \displaystyle \boldsymbol{u}\cdot\boldsymbol{v}.
Övning 3.2
För vilka värden på \displaystyle a är vektorerna \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}a\\ -2\\1\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2a\\a\\-4\end{pmatrix} ortogonala?
Övning 3.3
Bestäm en enhetsvektor i \displaystyle yz-planet som är vinkelrät mot vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\-1\end{pmatrix}.
Övning 3.4
Bestäm en vektor som bildar lika stora vinklar med vektorerna \displaystyle \boldsymbol{v}_1=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\1\end{pmatrix}, \displaystyle \boldsymbol{v}_2=\underline{\boldsymbol{e}}\begin{pmatrix}1\\1\\0\end{pmatrix} och \displaystyle \boldsymbol{v}_3=\underline{\boldsymbol{e}}\begin{pmatrix}1\\0\\0\end{pmatrix}.
Övning 3.5
Antag att \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\-3\\6\end{pmatrix} och \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}1\\2\\2\end{pmatrix}.
- Bestäm projektionen av \displaystyle \boldsymbol{u} på \displaystyle \boldsymbol{v} samt dess längd, dvs \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} samt \displaystyle |\boldsymbol{u}_{\parallel\boldsymbol{v}}|.
- Bestäm \displaystyle \boldsymbol{v}_{\parallel\boldsymbol{u}} samt \displaystyle |\boldsymbol{v}_{\parallel\boldsymbol{u}}|.
Övning 3.6
Låt \displaystyle \boldsymbol{v}=\underline{\boldsymbol{e}}\begin{pmatrix}2\\2\\1\end{pmatrix}. Dela upp vektorn \displaystyle \boldsymbol{u}=\underline{\boldsymbol{e}}\begin{pmatrix}7\\-2\\3\end{pmatrix} som en summa
där \displaystyle \boldsymbol{u}_{\parallel\boldsymbol{v}} är parallell med vektorn \displaystyle \boldsymbol{v} och \displaystyle \boldsymbol{u}_{\perp\boldsymbol{v}} är ortogonal mot \displaystyle \boldsymbol{v}.
Övning 3.7
Bestäm vinkeln mellan vektorerna \displaystyle \boldsymbol{u} och \displaystyle \boldsymbol{v} då man vet att \displaystyle \boldsymbol{u}+3\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}-\boldsymbol{v} och \displaystyle \boldsymbol{u}+7\boldsymbol{v} är ortogonal mot \displaystyle 2\boldsymbol{u}+\boldsymbol{v}.
Övning 3.8
Antag att \displaystyle \boldsymbol{v}_1=\begin{pmatrix}2\\1\\-1\end{pmatrix} och \displaystyle \boldsymbol{v}_2=\begin{pmatrix}1\\1\\1\end{pmatrix}. Undersök om
a) |
\displaystyle \boldsymbol{u}_1=\begin{pmatrix}4\\1\\-5\end{pmatrix} | b) | \displaystyle \boldsymbol{u}_2=\begin{pmatrix}4\\3\\2\end{pmatrix} | c) | \displaystyle \boldsymbol{u}_3=\begin{pmatrix}-9\\-7\\-3\end{pmatrix} |
kan skrivas som en linjärkombination i mängden \displaystyle \{\boldsymbol{v}_{1},\boldsymbol{v}_{2}\}.
Övning 3.9
Antag att \displaystyle \boldsymbol{v}_1=\begin{pmatrix}2\\1\\-1\end{pmatrix} och \displaystyle \boldsymbol{v}_2=\begin{pmatrix}1\\1\\1\end{pmatrix}. Låt \displaystyle U vara mängden av alla linjärkombinationer av \displaystyle \boldsymbol{v}_1 och \displaystyle \boldsymbol{v}_2.
a) Bestäm \displaystyle U. Skissa och tolka \displaystyle U geometriskt.
b) Undersök om vektorerna \displaystyle \boldsymbol{u}_1, \displaystyle \boldsymbol{u}_2 och \displaystyle \boldsymbol{u}_3 i Övning 3.8 tillhör mängden \displaystyle U i a).
c) Låt \displaystyle \lambda och \displaystyle \mu vara två godtyckliga reella tal. Visa att linjärkombinationen \displaystyle \lambda\boldsymbol{u}_1 + \mu\boldsymbol{u}_3\in U. En sådan mängd \displaystyle U kommer vi att kalla för underrum i Kapitel 10.2.
d) Bestäm alla vektorer som inte ligger i \displaystyle U.
Övning 3.10
Antag att \displaystyle \boldsymbol{u}_1=\begin{pmatrix}4\\1\\-5\end{pmatrix} och \displaystyle \boldsymbol{u}_3=\begin{pmatrix}-9\\-7\\-3\end{pmatrix} som i Övning 3.8. Låt \displaystyle V vara mängden av alla linjärkombinationer av \displaystyle \boldsymbol{u}_1 och \displaystyle \boldsymbol{u}_3.
a) Bestäm och tolka \displaystyle V geometriskt.
b) Låt \displaystyle U vara som i Övning 3.9. Hur förhåller sig \displaystyle U och \displaystyle V till varandra? Förklara!
Övning 3.11
Antag att \displaystyle \boldsymbol{u}_1=\begin{pmatrix}4\\1\\-5\end{pmatrix} och \displaystyle \boldsymbol{u}_2=\begin{pmatrix}4\\3\\2\end{pmatrix} som i Övning 3.8. Låt \displaystyle W vara mängden av alla linjärkombinationer av \displaystyle \boldsymbol{u}_1 och \displaystyle \boldsymbol{u}_2.
a) Bestäm och tolka \displaystyle W geometriskt.
b) Låt \displaystyle U vara som i Övning 3.9. Bestäm snittmängden \displaystyle U\cap W, dvs mängden av alla gemensamma vektorer som ligger i både \displaystyle U och \displaystyle W. Skissa \displaystyle U, \displaystyle W och \displaystyle U\cap W i samma figur.