Övningar Kapitel 3
Förberedande kurs i matematik
Innehåll |
Avsnitt 3.1 Mängdlära
Övning 3.1.1
Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm
a) | \displaystyle \displaystyle A\cup B | b) | \displaystyle \displaystyle A\cap B | c) | \displaystyle \displaystyle A\setminus B | d) | \displaystyle \displaystyle B \setminus A |
Avsnitt 3.2 Funktionsbegreppet
Övning 3.2.1
Låt \displaystyle f(x)=\sqrt{x}. Vilka av följande val till definitions- och målmängd är tillåtna?
a) \displaystyle f:\mathbb{R}_+\to \mathbb{R}_+ |
b) \displaystyle f:\mathbb{R}_+\to \mathbb{R} |
c) \displaystyle f:\mathbb{R}\to \mathbb{R} |
d) \displaystyle f:\mathbb{R}\to \mathbb{C} |
e) \displaystyle f:\mathbb{C}\to \mathbb{C} |
Övning 3.2.2
Låt \displaystyle f:\mathbb{N} \rightarrow \mathbb{N} så att \displaystyle f(x)= x+2 och att \displaystyle g:\mathbb{N} \rightarrow \mathbb{N} så att \displaystyle g(x)= 2x.
a) | Hur ser den sammansatta funktionen \displaystyle f(g(x)) ut? |
b) | Hur ser den sammansatta funktionen \displaystyle g(f(x)) ut? |
c) | Är \displaystyle g(f(x)) och \displaystyle f(g(x)) samma funktion? |
Övning 3.2.3
I kurslitteraturen beskrivs injektivitet som att en funktion \displaystyle f:{T}\rightarrow{S} är injektiv om \displaystyle f avbildar "skilda värden på skilda värden". Detta kan man tolka som att \displaystyle a \neq b \Rightarrow f(a) \neq f(b). Detta påstående är däremot inte alltid så praktiskt att arbeta med. En enklare formulering är det ekvivalenta \displaystyle f(a)=f(b) \Rightarrow a = b . Vi kan läsa ut denna formulering som att "om avbildningen av två element är samma, så måste de två elementen också vara samma".
Använd \displaystyle f(a)=f(b) \Rightarrow a = b för att visa att följande funktioner är injektiva. Låt \displaystyle f, g, h, p:{\mathbb{R}} \to {\mathbb{R}}
a) \displaystyle f(x) = 4x + 5 |
b) \displaystyle g(x) = x^3 |
c) \displaystyle h(x) = e^{x} |
d) \displaystyle p(x) = h(g(x)) |
Övning 3.2.4
Låt \displaystyle f(x)=5x. Bestäm \displaystyle f:s värdemängd och avgör huruvida \displaystyle f är injektiv/surjektiv i vart och ett av följande fall:
a) | \displaystyle f:\{3,5,6,7\} \to \mathbb{R} | b) | \displaystyle f:\mathbb{R}\to \mathbb{R} | c) | \displaystyle f:\mathbb{R}\to \mathbb{C} | d) | \displaystyle f:\mathbb{Z}\to \mathbb{Z} |
Övning 3.2.5
Bestäm om följande funktioner är injektiva respektive surjektiva.
a) | \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2. | |
b) | \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.
\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}. | |
c) | \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}. | |
d) | \displaystyle r definierad genom \displaystyle r(x) = f(g(x)). | |
e) | \displaystyle s definierad genom \displaystyle s(x) = f(h(x)). |
Övning 3.2.6
Låt \displaystyle f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\} så att \displaystyle f(x)=x^2 och \displaystyle g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R} så att \displaystyle g(x) = -\sqrt{x}. Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:
a) | \displaystyle f |
b) | \displaystyle g |
c) | \displaystyle h(x) = f(g(x)). |
Övning 3.2.7*
Kan man skapa en bijektion mellan de naturliga talen \displaystyle \mathbb{N} och heltalen \displaystyle \mathbb{Z}? |
Avsnitt 3.4 Olikheter och absolutbelopp
Övning 3.4.1
Att räkna med absolutbelopp kan ibland verka svårt. Det man behöver komma ihåg är att absolutbeloppet alltid ger oss ett positivt tal. Vi delar in vår uppgift i olika fall, motsvarande de intervall där uttrycken är positiva respektiva negativa. Exempelvis \displaystyle |x| = x om x är positivt, medans \displaystyle |x| = -x om x är negativt. På samma sätt får vi \displaystyle |x-2| = x-2 när \displaystyle x \geq 2 men \displaystyle |x-2| = -(x-2) när \displaystyle x < 2. Detta gör att ekvationer ibland får fler, eller färre, lösningar än vi förväntar oss. Lös följande uppgifter genom att dela in x i flera intervall beroende på värdet av utrycket inom absolutbelopp.
a) \displaystyle |x| = 1
b) \displaystyle |x| = -1
c) \displaystyle |x-2| = 0
d) \displaystyle |x^2 -9| = 7
Övning 3.4.2
Fortsätt att dela upp ekvationerna i flera fall beroende på tecknet på uttrycket inom absolutbelopp. Även här får vi ibland fall med lite oväntade resultat.
Lös följande:
a) \displaystyle |x|+x^2 = 1
b) \displaystyle 3x + |x-3| = 5
c) \displaystyle x + |x-3| = 5
d) \displaystyle |x^2 -4x + 4| = 1
e) \displaystyle |x^2 -5x + 6| = -2x + \frac{19}{4}