Övningar Kapitel 3

Förberedande kurs i matematik

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Rad 138: Rad 138:
Kan man skapa en bijektion mellan de naturliga talen <math>\mathbb{N}</math> och heltalen <math>\mathbb{Z}</math>?
Kan man skapa en bijektion mellan de naturliga talen <math>\mathbb{N}</math> och heltalen <math>\mathbb{Z}</math>?
|}</div>{{#NAVCONTENT:Svar| Svar 3.2.6 | Lösning | Lösning 3.2.6}}
|}</div>{{#NAVCONTENT:Svar| Svar 3.2.6 | Lösning | Lösning 3.2.6}}
 +
 +
===Övning 3.4.1===
 +
<div class="ovning">
 +
I ekvationer där absolutbelopp är inblandande så är det oftast lättast att dela upp problemet i flera fall. Rent konkret löser vi ekvationen för olika intervall av x, där vi delar intervallen i de fall då absolutbeloppet ändrar tecken.
 +
 +
Lös följande:
 +
 +
a) <math> |x|+x^2 = 1</math>
 +
 +
b) <math> 3x + |x-3| = 5 </math>
 +
 +
c) <math> x + |x-3| = 5 </math>
 +
 +
d) <math> |x^2 -4x + 4| = 1 </math>
 +
 +
e) <math> |x^2 -5x + 6| = -2x + \frac{19}{4} </math>
 +
 +
</div>{{#NAVCONTENT:Svar a) | Svar 4.4.5a | Svar b) | Svar 4.4.5b | Svar c) | Svar 4.4.5c | Svar d) | Svar 4.4.5.d | Svar e) | Svar 4.4.5.e | Lösning a) | Lösning 4.4.5a | Lösning b) | Lösning 4.4.5b | Lösning c) | Lösning 4.4.5c | Lösning d) | Lösning 4.4.5d | Lösning e) | Lösning 4.4.5e}}

Versionen från 23 juli 2012 kl. 15.04

Innehåll

Avsnitt 3.1 Mängdlära

Övning 3.1.1

Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm

a) \displaystyle \displaystyle A\cup B b) \displaystyle \displaystyle A\cap B c) \displaystyle \displaystyle A\setminus B d) \displaystyle \displaystyle B \setminus A


Avsnitt 3.2 Funktionsbegreppet

Övning 3.2.1

Låt \displaystyle f(x)=\sqrt{x}. Vilka av följande val till definitions- och målmängd är tillåtna?

a) \displaystyle f:\mathbb{R}_+\to \mathbb{R}_+
b) \displaystyle f:\mathbb{R}_+\to \mathbb{R}
c) \displaystyle f:\mathbb{R}\to \mathbb{R}
d) \displaystyle f:\mathbb{R}\to \mathbb{C}
e) \displaystyle f:\mathbb{C}\to \mathbb{C}

Övning 3.2.2

Låt \displaystyle f:\mathbb{N} \rightarrow \mathbb{N} så att \displaystyle f(x)= x+2 och att \displaystyle g:\mathbb{N} \rightarrow \mathbb{N} så att \displaystyle g(x)= 2x.

a) Hur ser den sammansatta funktionen \displaystyle f(g(x)) ut?
b) Hur ser den sammansatta funktionen \displaystyle g(f(x)) ut?
c) Är \displaystyle g(f(x)) och \displaystyle f(g(x)) samma funktion?

Övning 3.2.3

I kurslitteraturen beskrivs injektivitet som att en funktion \displaystyle f:{T}\rightarrow{S} är injektiv om \displaystyle f avbildar "skilda värden på skilda värden". Detta kan man tolka som att \displaystyle a \neq b \Rightarrow f(a) \neq f(b). Detta påstående är däremot inte alltid så praktiskt att arbeta med. En enklare formulering är det ekvivalenta \displaystyle f(a)=f(b) \Rightarrow a = b . Vi kan läsa ut denna formulering som att "om avbildningen av två element är samma, så måste de två elementen också vara samma".

Använd \displaystyle f(a)=f(b) \Rightarrow a = b för att visa att följande funktioner är injektiva. Låt \displaystyle f, g, h, p:{\mathbb{R}} \to {\mathbb{R}}

a) \displaystyle f(x) = 4x + 5
b) \displaystyle g(x) = x^3
c) \displaystyle h(x) = e^{x}
d) \displaystyle p(x) = h(g(x))

Övning 3.2.4

Låt \displaystyle f(x)=5x. Bestäm \displaystyle f:s värdemängd och avgör huruvida \displaystyle f är injektiv/surjektiv i vart och ett av följande fall:

a) \displaystyle f:\{3,5,6,7\} \to \mathbb{R} b) \displaystyle f:\mathbb{R}\to \mathbb{R} c) \displaystyle f:\mathbb{R}\to \mathbb{C} d) \displaystyle f:\mathbb{Z}\to \mathbb{Z}

Övning 3.2.5

Bestäm om följande funktioner är injektiva respektive surjektiva.

a) \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2.
b) \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.

\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}.

c) \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}.
d) \displaystyle r definierad genom \displaystyle r(x) = f(g(x)).
e) \displaystyle s definierad genom \displaystyle s(x) = f(h(x)).


Övning 3.2.6

Låt \displaystyle f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\} så att \displaystyle f(x)=x^2 och \displaystyle g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R} så att \displaystyle g(x) = -\sqrt{x}. Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:

a) \displaystyle f
b) \displaystyle g
c) \displaystyle h(x) = f(g(x)).

Övning 3.2.7

Vissa funktioner har egenskapen att de är både injektiva och surjektiva, och vi kallar dessa funktioner bijektiva. En egenskap hos bijektiva funktioner är att målmängden och definitionsmängden innehåller precis lika många element. Detta är lätt att se med funktioner definierade på ändliga mängder, men samma resonemang används av matematiker för oändliga mängder. Vi säger då att två mängder har samma kardinalitet om och endast om vi kan skapa en bijektion mellan dem. Detta leder till lite märkliga samband. För att belysa ett av dem:

Kan man skapa en bijektion mellan de naturliga talen \displaystyle \mathbb{N} och heltalen \displaystyle \mathbb{Z}?

Övning 3.4.1

I ekvationer där absolutbelopp är inblandande så är det oftast lättast att dela upp problemet i flera fall. Rent konkret löser vi ekvationen för olika intervall av x, där vi delar intervallen i de fall då absolutbeloppet ändrar tecken.

Lös följande:

a) \displaystyle |x|+x^2 = 1

b) \displaystyle 3x + |x-3| = 5

c) \displaystyle x + |x-3| = 5

d) \displaystyle |x^2 -4x + 4| = 1

e) \displaystyle |x^2 -5x + 6| = -2x + \frac{19}{4}