3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
Aktuelle Version (09:07, 4. Sep. 2009) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 4 dazwischen liegende Versionen mit ein.)
Zeile 9: Zeile 9:
===Übung 3.4:1===
===Übung 3.4:1===
<div class="ovning">
<div class="ovning">
-
Berechnen Sie folgende Ausdrücke durch Polynomdivision. (Manche Ausdrücke haben auch einen Rest)
+
Berechne folgende Ausdrücke durch Polynomdivision. (Manche Ausdrücke haben auch einen Rest.)
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
Zeile 27: Zeile 27:
===Übung 3.4:2===
===Übung 3.4:2===
<div class="ovning">
<div class="ovning">
-
Die Gleichung <math>\,z^3-3z^2+4z-2=0\,</math> hat die eine Wurzel <math>\,z=1\,</math>. Bestimmen Sie die restlichen Wurzeln.
+
Die Gleichung <math>\,z^3-3z^2+4z-2=0\,</math> hat die eine Wurzel <math>\,z=1\,</math>. Bestimme die restlichen Wurzeln.
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:2|Lösung|Lösung 3.4:2}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:2|Lösung|Lösung 3.4:2}}
===Übung 3.4:3===
===Übung 3.4:3===
<div class="ovning">
<div class="ovning">
-
Die Gleichung <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> hat die Wurzeln <math>\,z=2i\,</math> und <math>\,z=-1-i\,</math>. Lösen Sie die Gleichung.
+
Die Gleichung <math>\,z^4+2z^3+6z^2 +8z +8 =0\,</math> hat die Wurzeln <math>\,z=2i\,</math> und <math>\,z=-1-i\,</math>. Löse die Gleichung.
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:3|Lösung|Lösung 3.4:3}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:3|Lösung|Lösung 3.4:3}}
===Übung 3.4:4===
===Übung 3.4:4===
<div class="ovning">
<div class="ovning">
-
Bestimmen Sie die reellen Zahlen <math>\,a\,</math> und <math>\,b\,</math>, sodass die Gleichung <math>\ z^3+az+b=0\ </math> die Wurzel <math>\,z=1-2i\,</math> hat. Lösen Sie danach die Gleichung.
+
Bestimme die reellen Zahlen <math>\,a\,</math> und <math>\,b\,</math>, sodass die Gleichung <math>\ z^3+az+b=0\ </math> die Wurzel <math>\,z=1-2i\,</math> hat. Löse danach die Gleichung.
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:4|Lösung|Lösung 3.4:4}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:4|Lösung|Lösung 3.4:4}}
===Übung 3.4:5===
===Übung 3.4:5===
<div class="ovning">
<div class="ovning">
-
Bestimmen Sie <math>\,a\,</math> und <math>\,b\,</math> sodass die Gleichung <math>\ z^4-6z^2+az+b=0\ </math> eine dreifache Wurzel hat. Lösen Sie danach die Gleichung.
+
Bestimme<math>\,a\,</math> und <math>\,b\,</math>, sodass die Gleichung <math>\ z^4-6z^2+az+b=0\ </math> eine dreifache Wurzel hat. Löse danach die Gleichung.
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:5|Lösung|Lösung 3.4:5}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:5|Lösung|Lösung 3.4:5}}
===Übung 3.4:6===
===Übung 3.4:6===
<div class="ovning">
<div class="ovning">
-
Die Gleichung <math>\ z^4+3z^3+z^2+18z-30=0\ </math> hat eine rein imaginäre Wurzel. Bestimmen Sie alle Wurzeln.
+
Die Gleichung <math>\ z^4+3z^3+z^2+18z-30=0\ </math> hat eine rein imaginäre Wurzel. Bestimme alle Wurzeln.
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:6|Lösung|Lösung 3.4:6}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:6|Lösung|Lösung 3.4:6}}
===Übung 3.4:7===
===Übung 3.4:7===
<div class="ovning">
<div class="ovning">
-
Bestimmen Sie ein Polynom mit den Nullstellen
+
Bestimme ein Polynom mit den folgenden Nullstellen.
{| width="100%" cellspacing="10px"
{| width="100%" cellspacing="10px"
|a)
|a)
-
|width="50%"|<math>1\,</math>, <math>\,2\,</math> and <math>\,4</math>
+
|width="50%"|<math>1\,</math>, <math>\,2\,</math> und <math>\,4</math>
|b)
|b)
|width="50%"| <math>-1+ i\,</math> und <math>\,-1-i</math>
|width="50%"| <math>-1+ i\,</math> und <math>\,-1-i</math>
|}
|}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:7|Lösung a|Lösung 3.4:7a|Lösung b|Lösung 3.4:7b}}
</div>{{#NAVCONTENT:Antwort|Antwort 3.4:7|Lösung a|Lösung 3.4:7a|Lösung b|Lösung 3.4:7b}}
 +
 +
 +
'''Diagnostische Prüfung und Schlussprüfung'''
 +
 +
Nachdem Du mit der Theorie und den Übungen fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.

Aktuelle Version

       Theorie          Übungen      

Übung 3.4:1

Berechne folgende Ausdrücke durch Polynomdivision. (Manche Ausdrücke haben auch einen Rest.)

a) \displaystyle \displaystyle\frac{x^2-1}{x-1} b) \displaystyle \displaystyle\frac{x^2}{x+1} c) \displaystyle \displaystyle \frac{x^3+a^3}{x+a}
d) \displaystyle \displaystyle\frac{x^3 +x+2}{x+1} e) \displaystyle \displaystyle \frac{x^3+2x^2+1}{x^2+3x+1}

Übung 3.4:2

Die Gleichung \displaystyle \,z^3-3z^2+4z-2=0\, hat die eine Wurzel \displaystyle \,z=1\,. Bestimme die restlichen Wurzeln.

Übung 3.4:3

Die Gleichung \displaystyle \,z^4+2z^3+6z^2 +8z +8 =0\, hat die Wurzeln \displaystyle \,z=2i\, und \displaystyle \,z=-1-i\,. Löse die Gleichung.

Übung 3.4:4

Bestimme die reellen Zahlen \displaystyle \,a\, und \displaystyle \,b\,, sodass die Gleichung \displaystyle \ z^3+az+b=0\ die Wurzel \displaystyle \,z=1-2i\, hat. Löse danach die Gleichung.

Übung 3.4:5

Bestimme\displaystyle \,a\, und \displaystyle \,b\,, sodass die Gleichung \displaystyle \ z^4-6z^2+az+b=0\ eine dreifache Wurzel hat. Löse danach die Gleichung.

Übung 3.4:6

Die Gleichung \displaystyle \ z^4+3z^3+z^2+18z-30=0\ hat eine rein imaginäre Wurzel. Bestimme alle Wurzeln.

Übung 3.4:7

Bestimme ein Polynom mit den folgenden Nullstellen.

a) \displaystyle 1\,, \displaystyle \,2\, und \displaystyle \,4 b) \displaystyle -1+ i\, und \displaystyle \,-1-i


Diagnostische Prüfung und Schlussprüfung

Nachdem Du mit der Theorie und den Übungen fertig bist, solltest Du die diagnostische Prüfung und die Schlussprüfung machen. Du findest den Link zu den Prüfungen in Deiner Student Lounge.