Slaskövning13

SamverkanLinalgLIU

Version från den 12 september 2010 kl. 06.14; Geoba (Diskussion | bidrag)
Hoppa till: navigering, sök

Innehåll

Övning 13.1

Låt \displaystyle \boldsymbol{f}_1=(2,1,2,1)^t och \displaystyle \boldsymbol{f}_2=(2,5,1,4)^t vara två vektorer i \displaystyle {\bf R}^4 . Bestäm talet \displaystyle \lambda så att vektorn \displaystyle \lambda\boldsymbol{f}_1+\boldsymbol{f}_2 blir ortogonal mot \displaystyle \boldsymbol{f}_1 .


Övning 13.2

Bestäm vinkeln mellan \displaystyle \boldsymbol{f}_1=(1,2,3,1,1)^t och \displaystyle \boldsymbol{f}_2=(1,2,1,-1,1)^t i \displaystyle {\bf R}^5 .


Övning 13.3

Beräkna sidlängder och vinklar i den triangel i \displaystyle {\bf R}^5 som har hörn i punkterna \displaystyle (2,4,2,4,2) , \displaystyle (6,4,4,4,6) och \displaystyle (5,7,5,7,2) .



Övning 13.4

Ange reella tal \displaystyle a och \displaystyle b så att

\displaystyle

\varphi(\boldsymbol{u},\boldsymbol{v})=x_1y_1+3x_1y_2+ax_2y_1+bx_2y_2

blir en skalärprodukt i \displaystyle {\bf R}^2 , där \displaystyle \boldsymbol{u}=(x_1,x_2)^t och \displaystyle \boldsymbol{v}=(y_1,y_2)^t .



Övning 13.5

I \displaystyle {\bf R}^3 införs skalärprodukten

\displaystyle

\varphi(\boldsymbol{u},\boldsymbol{v})=x_1y_1+2x_2y_2+11x_3y_3-x_1y_2-x_2y_1-x_1y_3-x_3y_1+2x_2y_3+2x_3y_2,

där \displaystyle \boldsymbol{u}=(x_1,x_2,x_3)^t och \displaystyle \boldsymbol{v}=(y_1,y_2,y_3)^t . Bestäm längden av vektorn \displaystyle (1,-2,1)^t .




Övning 13.6

För vilka värden på \displaystyle a är vektorerna \displaystyle (a,1,1)^t och \displaystyle (a,1,a)^t ortogonala med avseende på skalärprodukten

\displaystyle

\varphi( \boldsymbol{u} , \boldsymbol{v} )=x_1y_1+2x_2y_2+3x_3y_3

i \displaystyle {\bf R}^3 .