6.2 Matrisoperationer

SamverkanLinalgLIU

(Skillnad mellan versioner)
Hoppa till: navigering, sök
Nuvarande version (12 september 2011 kl. 14.44) (redigera) (ogör)
 
Rad 17: Rad 17:
<imagemap>
<imagemap>
-
Bild:MatrisProdukt.png|250px|alt=Alt text
+
Bild:MatrisProdukt.png|150px|alt=Alt text
default [http://webcourses.itn.liu.se/webkurs/MatrisProdukt.jnlp Du kan här multiplicera och invertera matriser]
default [http://webcourses.itn.liu.se/webkurs/MatrisProdukt.jnlp Du kan här multiplicera och invertera matriser]
</imagemap>
</imagemap>

Nuvarande version

       6.1          6.2          6.3          6.4          6.5          6.6      


Läs textavsnitt 6.2 Matrioperationer.


Innan du börjar arbeta med detta moment så kan multiplicera matriser med varandra samt bestämma inversen till en 3x3-matris genom att klicka på bilden.

alt=Alt textBildinformation


Övning 7.4

Bestäm \displaystyle A^n där \displaystyle n är ett positivt heltal om

a) \displaystyle A=\begin{pmatrix}3&0\\0&2\end{pmatrix} b) \displaystyle A=\begin{pmatrix}1&2\\0&1\end{pmatrix}


Övning 7.5

Bestäm en \displaystyle 2\times2 matris \displaystyle A sådan att \displaystyle A^2=B om

a) \displaystyle B=\begin{pmatrix}9&0\\0&4\end{pmatrix} b) \displaystyle B=\begin{pmatrix}1&-4\\0&1\end{pmatrix}


Övning 7.6

Betrakta matriserna

\displaystyle

A=\left(\begin{array}{rr}1&3\\0&4\\5&6\end{array}\right),\qquad B=\begin{pmatrix}1&2\\{-3}&{-6}\end{pmatrix},\qquad C=\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix},\qquad D=\begin{pmatrix}3\\2\\1\end{pmatrix}.

Beräkna också följande matriser om de är definierade

a) \displaystyle A^t b) \displaystyle B^t c) \displaystyle C^t
d) \displaystyle D^t e) \displaystyle (AB)^t f) \displaystyle B^tA
g) \displaystyle AA^t h) \displaystyle A^tA i) \displaystyle DD^t
j) \displaystyle D^tD k) \displaystyle CD l) \displaystyle D^tC