4. Exercises

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (17:36, 22 March 2010) (edit) (undo)
 
(6 intermediate revisions not shown.)
Line 3: Line 3:
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
{{Not selected tab|[[4. Forces and vectors |Theory]]}}
{{Not selected tab|[[4. Forces and vectors |Theory]]}}
-
{{Selected tab|[[2. Exercises|Exercises]]}}
+
{{Selected tab|[[4. Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
Line 40: Line 40:
<div class="ovning">
<div class="ovning">
a) Find the magnitude of the force
a) Find the magnitude of the force
-
6 <math>\mathbf{i}</math><math>+</math> 8
+
6 <math>\mathbf{i}</math><math>+</math>8
<math>\mathbf{j}</math> N, where <math>\mathbf{i}</math> and <math>\mathbf{j}</math> are
<math>\mathbf{j}</math> N, where <math>\mathbf{i}</math> and <math>\mathbf{j}</math> are
perpendicular unit vectors.
perpendicular unit vectors.
Line 53: Line 53:
===Exercise 4.4===
===Exercise 4.4===
<div class="ovning">
<div class="ovning">
-
A force is expressed as 9 <math>\mathbf{i}</math><math>+</math> 10
+
A force is expressed as 9 <math>\mathbf{i}</math><math>-</math>10
<math>\mathbf{j}</math> N.
<math>\mathbf{j}</math> N.
Line 68: Line 68:
a)
a)
-
<math>\left( 4\mathbf{i}+3\mathbf{j} \right)\text{ N}</math>
+
(<math>4\mathbf{i}+3\mathbf{j}</math>
 +
) N
b)
b)
-
<math>\left( 4\mathbf{i}-3\mathbf{j} \right)\text{ N}</math>
+
(<math>4\mathbf{i}-3\mathbf{j}</math>
 +
) N
c)
c)
-
<math>\left( -2\mathbf{i}+8\mathbf{j} \right)\text{ N}</math>
+
(<math>-2\mathbf{i}+8\mathbf{j}</math>
 +
) N
d)
d)
-
<math>\left( -5\mathbf{i}-7\mathbf{j} \right)\text{ N}</math>
+
(<math>-5\mathbf{i}-7\mathbf{j}</math>
 +
) N
Line 87: Line 91:
<div class="ovning">
<div class="ovning">
-
The diagram shows two forces and the unit vectors i and j.
+
The diagram shows two forces and the unit vectors <math>\mathbf{i}</math> and <math>\mathbf{j}</math>.
-
 
+
 +
[[Image:E4.6.GIF]]
a) Express each force in the form <math>a\mathbf{i}+b\mathbf{j}</math>.
a) Express each force in the form <math>a\mathbf{i}+b\mathbf{j}</math>.
Line 98: Line 102:
</div>{{#NAVCONTENT:Answer a|Answer 4.6a|Answer b|Answer 4.6b|Answer c|Answer 4.6c|Solution a|Solution 4.6a|Solution b|Solution 4.6b|Solution c|Solution 4.6c}}
</div>{{#NAVCONTENT:Answer a|Answer 4.6a|Answer b|Answer 4.6b|Answer c|Answer 4.6c|Solution a|Solution 4.6a|Solution b|Solution 4.6b|Solution c|Solution 4.6c}}
 +
 +
 +
 +
 +
===Exercise 4.7===
 +
<div class="ovning">
 +
The diagram shows 3 forces and the perpendicular unit vectors <math>\mathbf{i}</math> and <math>\mathbf{j}</math>.
 +
 +
[[Image:E4.7.GIF]]
 +
 +
a) Express each force in terms of the unit vectors <math>\mathbf{i}</math> and <math>\mathbf{j}</math>.
 +
 +
b) Find the magnitude of the resultant of the 3 forces.
 +
 +
 +
</div>{{#NAVCONTENT:Answer|Answer 4.7|Solution a|Solution 4.7a|Solution b|Solution 4.7b}}
 +
 +
 +
 +
===Exercise 4.8===
 +
<div class="ovning">
 +
 +
A force
 +
<math>{\mathbf{F}_{1}}</math>
 +
= (<math>9\mathbf{i}+12\mathbf{j}</math>) N and a second force <math>{\mathbf{F}_{2}}</math> = (<math>-4\mathbf{i}+\mathbf{j}</math>) N act on a particle.
 +
 +
(a) Find the magnitude of
 +
<math>{\mathbf{F}_{1}}</math>.
 +
 +
 +
(b) Draw a diagram to show the direction of
 +
<math>{\mathbf{F}_{1}}</math>, and calculate the
 +
angle between
 +
<math>{\mathbf{F}_{1}}</math>
 +
and <math>\mathbf{i}</math>.
 +
 +
 +
(c) Find the resultant of
 +
<math>{\mathbf{F}_{1}}</math>
 +
and <math>{\mathbf{F}_{2}}</math>.
 +
 +
 +
</div>{{#NAVCONTENT:Answer a|Answer 4.8a|Answer b|Answer 4.8b|Answer c|Answer 4.8c|Solution a|Solution 4.8a|Solution b|Solution 4.8b|Solution c|Solution 4.8c}}
 +
 +
 +
===Exercise 4.9===
 +
<div class="ovning">
 +
Four forces are shown on the diagram below.
 +
 +
[[Image:E4.9.GIF]]
 +
 +
a) Find the magnitude of the resultant of the four forces.
 +
 +
b) Find the angle between the resultant force and the unit vector <math>\mathbf{i}</math>
 +
correct to the nearest degree.
 +
 +
 +
 +
</div>{{#NAVCONTENT:Answer|Answer 4.9|Solution a|Solution 4.9a|Solution b|Solution 4.9b}}

Current revision

       Theory          Exercises      


Exercise 4.1

The diagram shows a force and the unit vectors \displaystyle \mathbf{i} and \displaystyle \mathbf{j}

Image:E4.1.GIF

Express the force in terms of the unit vectors \displaystyle \mathbf{i} and \displaystyle \mathbf{j}


Exercise 4.2

Express each of the forces given below in the form \displaystyle a\mathbf{i}+b\mathbf{j}

Image:E4.2.GIF


Exercise 4.3

a) Find the magnitude of the force 6 \displaystyle \mathbf{i}\displaystyle +8 \displaystyle \mathbf{j} N, where \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are perpendicular unit vectors.

b) Find the angle, to the nearest degree, between the force and the unit vector \displaystyle \mathbf{i}.



Exercise 4.4

A force is expressed as 9 \displaystyle \mathbf{i}\displaystyle -10 \displaystyle \mathbf{j} N.

a) Calculate the magnitude of this force.

b) Find the angle between the force and the unit vector \displaystyle \mathbf{i}.

Exercise 4.5

For each force given below find its magnitude and the angle between the force and the unit vector \displaystyle \mathbf{i}.

a) (\displaystyle 4\mathbf{i}+3\mathbf{j} ) N

b) (\displaystyle 4\mathbf{i}-3\mathbf{j} ) N

c) (\displaystyle -2\mathbf{i}+8\mathbf{j} ) N

d) (\displaystyle -5\mathbf{i}-7\mathbf{j} ) N



Exercise 4.6

The diagram shows two forces and the unit vectors \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.

Image:E4.6.GIF

a) Express each force in the form \displaystyle a\mathbf{i}+b\mathbf{j}.

b) Find the magnitude of the resultant of these two forces.

c) Find the angle between the resultant force and the unit vector \displaystyle \mathbf{i}, and draw a diagram to show the direction of the resultant force.



Exercise 4.7

The diagram shows 3 forces and the perpendicular unit vectors \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.

Image:E4.7.GIF

a) Express each force in terms of the unit vectors \displaystyle \mathbf{i} and \displaystyle \mathbf{j}.

b) Find the magnitude of the resultant of the 3 forces.



Exercise 4.8

A force \displaystyle {\mathbf{F}_{1}} = (\displaystyle 9\mathbf{i}+12\mathbf{j}) N and a second force \displaystyle {\mathbf{F}_{2}} = (\displaystyle -4\mathbf{i}+\mathbf{j}) N act on a particle.

(a) Find the magnitude of \displaystyle {\mathbf{F}_{1}}.


(b) Draw a diagram to show the direction of \displaystyle {\mathbf{F}_{1}}, and calculate the angle between \displaystyle {\mathbf{F}_{1}} and \displaystyle \mathbf{i}.


(c) Find the resultant of \displaystyle {\mathbf{F}_{1}} and \displaystyle {\mathbf{F}_{2}}.



Exercise 4.9

Four forces are shown on the diagram below.

Image:E4.9.GIF

a) Find the magnitude of the resultant of the four forces.

b) Find the angle between the resultant force and the unit vector \displaystyle \mathbf{i} correct to the nearest degree.