Solution 5.9

From Mechanics

Jump to: navigation, search

Image:5.9.gif


As the lorry and thus all parts of the lorry have constant velocity the forces on the load must be in equilibrium.

Resolving horisontally to the right

\displaystyle \begin{align} & T2\cos {{28}^{\circ }}-T1\cos {{32}^{\circ }}=0 \\ & \\ \end{align}

giving

\displaystyle T2=\frac{\cos {{32}^{\circ }}}{\cos {{28}^{\circ }}}T1

Resolving vertically upwards.

\displaystyle T1\cos {{58}^{\circ }}+T2\cos {{62}^{\circ }}-mg=0

Substituting for \displaystyle T2 in this equation gives an equation only containing \displaystyle T1.

\displaystyle \begin{align} & T1\cos {{58}^{\circ }}+\frac{\cos {{32}^{\circ }}}{\cos {{28}^{\circ }}}T1\cos {{62}^{\circ }}-mg=0 \\ & \\ & T1\left( \cos {{58}^{\circ }}+\frac{\cos {{32}^{\circ }}}{\cos {{28}^{\circ }}}\cos {{62}^{\circ }} \right)=mg \\ & \\ & T1\left( 0\textrm{.}53+0\textrm{.}45 \right)=40\times 9\textrm{.}8 \\ & \\ & T1=\frac{392}{0\textrm{.}98}=400\ \text{N} \\ \end{align}

and thus using \displaystyle T2=\frac{\cos {{32}^{\circ }}}{\cos {{28}^{\circ }}}T1

\displaystyle T2=\frac{0\textrm{.}848}{0\textrm{.}883}\times 400=384\ \text{N}