20.3 Andragradsytor

SamverkanLinalgLIU

Hoppa till: navigering, sök
       20.1          20.2          20.3          20.4      


Läs textavsnitt 20.3 Andragradsytor.


Innan Du börjar arbeta med detta moment så kan Du visualisera andragradsytor genom att klicka på bilden.

alt=Alt textBildinformation


Du kan visualisera andragradsytor på allmän form genom att klicka på bilden.

alt=Alt textBildinformation


Du kan visualisera Exempel 20.7 i boken (finns också i PDF-format under länken ovan) genom att klicka på bilden.

alt=Alt textBildinformation


Innehåll

Övning 22.27

Låt \displaystyle d vara avståndet från en punkt på ytan

\displaystyle

3x_1^2+x_2^2+x_3^2+2\sqrt3x_1x_3=1

till origo. Vilka värden kan \displaystyle d anta? I förekommande fall ange de punkter där \displaystyle d antar sitt största respektive minsta värde.


Övning 22.28

Bestäm största resp. minsta värde som den kvadratiska formen

\displaystyle

Q=3x_2^2+3x_3^2+4x_1x_2+4x_1x_3-2x_2x_3

antar på enhetssfären \displaystyle x_1^2+x_2^2+x_3^2=1 och ange i vilka punkter extremvärdena antas.


Övning 22.29

Bestäm största och minsta värde av den kvadratiska formen

\displaystyle

Q=x_1^2+x_2^2+x_3^2+2x_1x_2+2x_1x_3-2x_2x_3

på enhetssfären \displaystyle x_1^2+x_2^2+x_3^2=1 och ange i vilka punkter extremvärdena antas.


Övning 22.30

Betrakta den kvadratiska formen

\displaystyle

Q(\boldsymbol{u})=Q(\underline{\boldsymbol{e}}X)=2x_1^2+2x_2^2+2x_3^2-2x_1x_2-2x_1x_3-2x_2x_3.

a) Uttryck \displaystyle Q i kanonisk bas.

b) Bestäm \displaystyle Q :s nollställen dels i den nya kanoniska basen och dels i den gamla basen.

c) Beskriv ytan

\displaystyle

2x_1^2+2x_2^2+2x_3^2-2x_1x_2-2x_1x_3-2x_2x_3=1

och bestäm ekvationen för ett plan som skär ytan under rät vinkel.



Övning 22.31

Bestäm en gemensam punkt till ytorna

\displaystyle

\begin{array}{rcl} 5x_1^2+8x_2^2+5x_3^2-4x_1x_2+8x_1x_3+4x_2x_3&=&9\\

                          x_1^2+x_2^2+x_3^2&=&1\end{array}