Övningar Kapitel 3
Förberedande kurs i matematik
Rad 1: | Rad 1: | ||
+ | ==Avsnitt 3.1 Mängdlära== | ||
===Övning 3.1.1=== | ===Övning 3.1.1=== | ||
<div class="ovning"> | <div class="ovning"> | ||
Rad 16: | Rad 17: | ||
+ | ==Avsnitt 3.2 Funktionsbegreppet== | ||
===Övning 3.2.1=== | ===Övning 3.2.1=== | ||
<div class="ovning"> | <div class="ovning"> | ||
Rad 30: | Rad 32: | ||
| Är <math> g(f(x))</math> och <math> f(g(x))</math> samma funktion? | | Är <math> g(f(x))</math> och <math> f(g(x))</math> samma funktion? | ||
|} | |} | ||
+ | </div>{{#NAVCONTENT:Lösning a) | Lösning 3.2.1a. | Lösning b) | Lösning 3.2.1b. |Svar c) | Svar 3.2.1c. }} | ||
+ | ===Övning 3.2.2=== | ||
+ | <div class="ovning"> | ||
+ | I kurslitteraturen beskrivs injektivitet som att en funktion <math>f:{T}\rightarrow{S}</math> är injektiv om <math>f</math> avbildar "skilda värden på skilda värden". Detta kan man tolka som att <math>a \neq b \Rightarrow f(a) \neq f(b)</math>. Detta påstående är däremot inte alltid så praktiskt att arbeta med. En enklare formulering är det ekvivalenta <math> f(a)=f(b) \Rightarrow a = b</math> . Vi kan läsa ut denna formulering som att "om avbildningen av två element är samma, så måste de två elementen också vara samma". | ||
- | < | + | Använd <math> f(a)=f(b) \Rightarrow a = b</math> för att visa att följande funktioner är injektiva. Låt <math>f, g, h, p:{\mathbb{R}} \to {\mathbb{R}}</math> |
+ | {| width="100%" cellspacing="10px" | ||
+ | |a) <math>f(x) = 4x + 5 </math> | ||
+ | |- | ||
+ | |b) <math>g(x) = x^3 </math> | ||
+ | |- | ||
+ | |c) <math>h(x) = e^{x}</math> | ||
+ | |- | ||
+ | |d) <math>p(x) = h(g(x))</math> | ||
+ | |} | ||
+ | |||
+ | </div>{{#NAVCONTENT:Lösning a)| Lösning 3.2.5a. | Lösning b) | Lösning 3.2.5b. | Lösning c) | Lösning 3.2.5c. | Lösning d) | Lösning 3.2.5d.}} | ||
- | ===Övning 3.2. | + | ===Övning 3.2.3 === |
<div class="ovning"> | <div class="ovning"> | ||
Låt <math>f(x)=5x</math>. Bestäm <math>f</math>:s värdemängd och avgör huruvida | Låt <math>f(x)=5x</math>. Bestäm <math>f</math>:s värdemängd och avgör huruvida | ||
Rad 53: | Rad 70: | ||
</div>{{#NAVCONTENT: Lösning a) | Lösning 3.2.2.a. | Lösning b) | Lösning 3.2.2.b. | Lösning c) | Lösning 3.2.2.c. | Lösning d) | Lösning 3.2.2.d.}} | </div>{{#NAVCONTENT: Lösning a) | Lösning 3.2.2.a. | Lösning b) | Lösning 3.2.2.b. | Lösning c) | Lösning 3.2.2.c. | Lösning d) | Lösning 3.2.2.d.}} | ||
- | ===Övning 3.2. | + | ===Övning 3.2.4=== |
<div class="ovning"> | <div class="ovning"> | ||
Bestäm om följande funktioner är injektiva respektive surjektiva. | Bestäm om följande funktioner är injektiva respektive surjektiva. | ||
Rad 79: | Rad 96: | ||
- | ===Övning 3.2. | + | ===Övning 3.2.5=== |
<div class="ovning"> | <div class="ovning"> | ||
Låt <math>f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\}</math> så att <math>f(x)=x^2</math> och <math>g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R}</math> så att <math>g(x) = -\sqrt{x}.</math> Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner: | Låt <math>f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\}</math> så att <math>f(x)=x^2</math> och <math>g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R}</math> så att <math>g(x) = -\sqrt{x}.</math> Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner: | ||
Rad 94: | Rad 111: | ||
|} | |} | ||
</div>{{#NAVCONTENT:Lösning a)| Lösning 3.2.4a.| Lösning b) | Lösning 3.2.4b. | Lösning c) | Lösning 3.2.4c.}} | </div>{{#NAVCONTENT:Lösning a)| Lösning 3.2.4a.| Lösning b) | Lösning 3.2.4b. | Lösning c) | Lösning 3.2.4c.}} | ||
- | |||
- | ===Övning 3.2.5=== | ||
- | <div class="ovning"> | ||
- | I kurslitteraturen beskrivs injektivitet som att en funktion <math>f:{T}\rightarrow{S}</math> är injektiv om f avbildar "skilda värden på skilda värden". Detta kan man tolka som att <math>a \neq b \Rightarrow f(a) \neq f(b)</math>. Detta påstående är däremot inte alltid så praktiskt att arbeta med. En enklare formulering är det ekvivalenta <math> f(a)=f(b) \Rightarrow a = b</math> . Vi kan läsa ut denna formulering som att "om avbildningen av två element är samma, så måste de två elementen också vara samma". | ||
- | |||
- | Använd <math> f(a)=f(b) \Rightarrow a = b</math> för att visa att följande funktioner är injektiva. Låt <math>f, g, h, p:{R} \to {R}</math> | ||
- | |||
- | |||
- | a) <math>f(x) = 4x + 5 </math> | ||
- | |||
- | b) <math>g(x) = x^3 </math> | ||
- | |||
- | c) <math>h(x) = e^{x}</math> | ||
- | |||
- | d) <math>p(x) = h(g(x))</math> | ||
- | |||
- | </div>{{#NAVCONTENT:Lösning a)| Lösning 3.2.5a. | Lösning b) | Lösning 3.2.5b. | Lösning c) | Lösning 3.2.5c. | Lösning d) | Lösning 3.2.5d.}} | ||
- | |||
===Övning 3.2.6=== | ===Övning 3.2.6=== |
Versionen från 17 juli 2012 kl. 12.53
Innehåll |
Avsnitt 3.1 Mängdlära
Övning 3.1.1
Låt \displaystyle A=\{1,2,4\} och \displaystyle B=\{3,4\}. Bestäm
a) | \displaystyle \displaystyle A\cup B | b) | \displaystyle \displaystyle A\cap B | c) | \displaystyle \displaystyle A\setminus B | d) | \displaystyle \displaystyle B \setminus A |
Avsnitt 3.2 Funktionsbegreppet
Övning 3.2.1
Låt \displaystyle f:\mathbb{N} \rightarrow \mathbb{N} så att \displaystyle f(x)= x+2 och att \displaystyle g:\mathbb{N} \rightarrow \mathbb{N} så att \displaystyle g(x)= 2x.
a) | Hur ser den sammansatta funktionen \displaystyle f(g(x)) ut? |
b) | Hur ser den sammansatta funktionen \displaystyle g(f(x)) ut? |
c) | Är \displaystyle g(f(x)) och \displaystyle f(g(x)) samma funktion? |
Övning 3.2.2
I kurslitteraturen beskrivs injektivitet som att en funktion \displaystyle f:{T}\rightarrow{S} är injektiv om \displaystyle f avbildar "skilda värden på skilda värden". Detta kan man tolka som att \displaystyle a \neq b \Rightarrow f(a) \neq f(b). Detta påstående är däremot inte alltid så praktiskt att arbeta med. En enklare formulering är det ekvivalenta \displaystyle f(a)=f(b) \Rightarrow a = b . Vi kan läsa ut denna formulering som att "om avbildningen av två element är samma, så måste de två elementen också vara samma".
Använd \displaystyle f(a)=f(b) \Rightarrow a = b för att visa att följande funktioner är injektiva. Låt \displaystyle f, g, h, p:{\mathbb{R}} \to {\mathbb{R}}
a) \displaystyle f(x) = 4x + 5 |
b) \displaystyle g(x) = x^3 |
c) \displaystyle h(x) = e^{x} |
d) \displaystyle p(x) = h(g(x)) |
Övning 3.2.3
Låt \displaystyle f(x)=5x. Bestäm \displaystyle f:s värdemängd och avgör huruvida \displaystyle f är injektiv/surjektiv i vart och ett av följande fall:
a) | \displaystyle f:\{3,5,6,7\} \to \mathbb{R} | b) | \displaystyle f:\mathbb{R}\to \mathbb{R} | c) | \displaystyle f:\mathbb{R}\to \mathbb{C} | d) | \displaystyle f:\mathbb{Z}\to \mathbb{Z} |
Övning 3.2.4
Bestäm om följande funktioner är injektiva respektive surjektiva.
a) | \displaystyle f:\mathbb{R} \rightarrow \mathbb{R} så att \displaystyle f(x)= x^2. | |
b) | \displaystyle g:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle g(x)= -x-3.
\displaystyle \mathbb{R}_+ definieras som \displaystyle \mathbb{R}_+ = \{x\in \mathbb{R}\mid x>0\}. | |
c) | \displaystyle h:\mathbb{R}_+\rightarrow \mathbb{R} så att \displaystyle h(x) = -\sqrt{x}. | |
d) | \displaystyle r definierad genom \displaystyle r(x) = f(g(x)). | |
e) | \displaystyle s definierad genom \displaystyle s(x) = f(h(x)). |
Övning 3.2.5
Låt \displaystyle f:\mathbb{R}\rightarrow \{x\in \mathbb{R}\mid x\geq 0\} så att \displaystyle f(x)=x^2 och \displaystyle g:\{x\in \mathbb{R}\mid x\geq 0\} \rightarrow \mathbb{R} så att \displaystyle g(x) = -\sqrt{x}. Bestäm målmängd, definitionsmängd, värdemängd, surjektivitet och injektivitet för följande funktioner:
a) | \displaystyle f |
b) | \displaystyle g |
c) | \displaystyle h(x) = f(g(x)). |
Övning 3.2.6
Kan man skapa en bijektion mellan de naturliga talen \displaystyle \mathbb{N} och heltalen \displaystyle \mathbb{Z}? |