18. Motion with variable acceleration I
From Mechanics
Theory | Exercises |
18. Motion With Variable Acceleration I
Key Points
|
A ball is thrown vertically upwards. The height,
Show that the acceleration of the ball is constant and find its maximum height.
Solution
Differentiate once to find the velocity:
Differentiate again to find the acceleration:
Hence the acceleration is constant.
At its maximum height the velocity of the ball will be zero.
This time can be substituted to find the maximum height:
79
8
−4.9
79.8
2=4 m
A particle moves so that its position vector,
t2−6t+9
i+
2t+6
j
The unit vectors
a) Find the velocity and acceleration the ball.
b) Find the time when the particle is moving due north.
Solution
a) Differentiate the position vector once to find the velocity:
2t−6
i+2j
Differentiate the velocity to find the acceleration.
b) When travelling north the
The particle will be moving north after 3 seconds.
A particle, of mass 8 kg, moves so that at time
and the unit vectors
a) Find the velocity and acceleration of the particle.
b) Find the magnitude of the force acting on the particle.
c) Find the time when the speed of the particle is 4
Solution
a) Differentiate the position vector once to obtain the velocity of the particle.
Differentiate the velocity to obtain the acceleration:
b) The resultant force on the particle is found using
Now the magnitude,
(−16)2+(−16)2=22
6 N (to 3sf)
c) First find an expression for the speed,
(8−2t)2+
12−2t
2
Given that the speed is 4 \displaystyle \text{m}{{\text{s}}^{-1}} leads to an equation which can be solved as shown below:
\displaystyle \begin{align}
& 4=\sqrt{{{(8-2t)}^{2}}+{{\left( 12-2t \right)}^{2}}} \\
& {{4}^{2}}={{(8-2t)}^{2}}+{{\left( 12-2t \right)}^{2}} \\
& 16=64-32t+4{{t}^{2}}+144-48t+4{{t}^{2}} \\
& 0=8{{t}^{2}}-80t+192 \\
& 0={{t}^{2}}-10t+24 \\
& 0=(t-6)(t-4) \\
& t=6\text{ or }t=4 \\
\end{align}
The speed will be 4 \displaystyle \text{m}{{\text{s}}^{-1}} when t = 4 and when t = 6.