Solution 8.1a
From Mechanics
In this case we have \displaystyle \mathbf{u}=4\mathbf{i} , \displaystyle \mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j} and \displaystyle {{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}.
Substituting these into the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} gives the position vector of the ball at time \displaystyle 10 as:
\displaystyle \begin{align} & \mathbf{r}=(4\mathbf{i})t+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j}){{t}^{\ 2}}+1\textrm{.}5\mathbf{j} \\ & =8t\mathbf{i}+2t\mathbf{j}-5{{t}^{\ 2}}\mathbf{j}+1\textrm{.}5\mathbf{j} \\ & =(8t)\mathbf{i}+(1\textrm{.}5+2t-5{{t}^{\ 2}})\mathbf{j} \ \text{m} \end{align}