19. Variable acceleration II
From Mechanics
Theory | Exercises |
Key Points
\displaystyle \begin{align}
& v=\int{a}dt \\ & s=\int{v}dt \\ \end{align} | \displaystyle \begin{align}
& \mathbf{v}=\int{\mathbf{a}}dt \\ & \mathbf{r}=\int{\mathbf{v}}dt \\ \end{align} |
Don't forget to evaluate constants of integration.
The acceleration, \displaystyle a \displaystyle \text{m}{{\text{s}}^{-1}}, of a particle, at time \displaystyle t t seconds is given by:
\displaystyle a=4-\frac{t}{20} \displaystyle \text{m}{{\text{s}}^{-2}}.
This model is valid for \displaystyle 0\le t\le 80. Given that the particle starts at rest, find the distance travelled by the particle when \displaystyle t=\text{ 8}0 .
Solution
First integrate the acceleration to obtain the velocity.
\displaystyle v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{2}}}{40}+{{c}_{1}}
To find the value of the constant
\displaystyle {{c}_{1}}
, note that the particle is initially at rest, so that
\displaystyle v=0
when
\displaystyle t=0.
Substituting these values shows that
\displaystyle {{c}_{1}}=0.
Hence the velocity is:
\displaystyle v=4t-\frac{{{t}^{2}}}{40}
The displacement of the particle can be found by integrating the velocity:
\displaystyle s=\int{\left( 4t-\frac{{{t}^{2}}}{40} \right)}dt=2{{t}^{2}}-\frac{{{t}^{3}}}{120}+{{c}_{2}}
To find the constant
\displaystyle {{c}_{2}}
, assume that the particle starts at the origin, so that
\displaystyle s=0
when
\displaystyle t=0.
Hence
\displaystyle {{c}_{2}}=0
and the displacement at time
\displaystyle t
is given by:
\displaystyle s=2{{t}^{2}}-\frac{{{t}^{3}}}{120}
To find the distance travelled substitute
\displaystyle t=80.
\displaystyle s=2\times {{80}^{2}}-\frac{{{80}^{3}}}{120}=8530\text{ m (to 3sf)}
A boat has an initial velocity of 0\textrm{.}5j \displaystyle \text{m}{{\text{s}}^{-1}} and experiences an acceleration of \displaystyle \left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right) \displaystyle \text{m}{{\text{s}}^{-2}}, at time \displaystyle t seconds. Assume that the boat is initially at the origin. The unit vector \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are directed east and north respectively.
a) Find the velocity of the boat at time \displaystyle t .
b) Find the distance of the boat from the origin when \displaystyle t=\text{ 12}0 .
Solution
a) Integrate the acceleration to obtain the velocity:
\displaystyle \begin{align}
& \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\
& =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+{{c}_{2}} \right)\mathbf{j}
\end{align}
When
\displaystyle t=0,
\displaystyle \mathbf{v}=0\textrm{.}5\mathbf{j}. These values can be substituted to give \displaystyle {{c}_{1}}=0 and \displaystyle {{c}_{2}}=0\textrm{.}5, so that the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+\textrm{.}5 \right)\mathbf{j}
b) Integrating the velocity gives the position vector:
\displaystyle \begin{align}
& \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0\textrm{.}5 \right)}dt\mathbf{j} \\
& =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j}
\end{align}
The boat is initially at the origin, so when
\displaystyle t=0,
the boat has position vector
\displaystyle 0\mathbf{i}+0\mathbf{j}.
Substituting these values gives
\displaystyle {{c}_{3}}=0
and
\displaystyle {{c}_{4}}=0.
Hence the position vector is:
\displaystyle \mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t \right)\mathbf{j}
Substituting
\displaystyle t=\text{12}0
, gives the required position vector.
\displaystyle \mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
\displaystyle s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}
At time \displaystyle t seconds the resultant force on a particle, of mass 250 kg is \displaystyle \left( 300t\mathbf{i}-400t\mathbf{j} \right) N. Initially the particle is at the origin and is moving with velocity (2\displaystyle \mathbf{i} - 3\displaystyle \mathbf{j}) \displaystyle \text{m}{{\text{s}}^{-1}}.
a) Find the acceleration at time \displaystyle t .
b) Find the velocity of the particle at time \displaystyle t .
c) Find the position vector of the particle at time \displaystyle t.
Solution
a) Using Newton’s second Law, \displaystyle \mathbf{F}=m\mathbf{a}, gives:
\displaystyle \begin{align}
& 300t\mathbf{i}-400t\mathbf{j}=250\mathbf{a} \\
& \mathbf{a}=\frac{6}{5}t\mathbf{i}-\frac{8}{5}t\mathbf{j} \\
\end{align}
b) Integrating the acceleration gives the velocity:
\displaystyle \begin{align}
& \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\
& =\left( \frac{3}{5}{{t}^{2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}+{{c}_{2}} \right)\mathbf{j}
\end{align}
As the initial velocity is
\displaystyle 2\mathbf{i}-3\mathbf{j},
this can be used with
\displaystyle t=0,
to show that
\displaystyle {{c}_{1}}=2
and
\displaystyle {{c}_{2}}=-3.
Hence the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{5}{{t}^{2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}-3 \right)\mathbf{j}
c) Integrating the velocity gives the position vector:
\displaystyle \begin{align}
& \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{2}}}{5}-3 \right)}dt\mathbf{j} \\
& =\left( \frac{{{t}^{3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j}
\end{align}
Note that the particle is initially at the origin. So using
\displaystyle \mathbf{r}=0\mathbf{i}+0\mathbf{j}
when
\displaystyle t=0,
gives
\displaystyle {{c}_{3}}=0
and
\displaystyle {{c}_{4}}=0.
Hence the position vector is given by:
\displaystyle \mathbf{r}=\left( \frac{{{t}^{3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t \right)\mathbf{j}