4. Forces and Vectors
From Mechanics
4. Forces and Vectors
Key Points
\displaystyle \begin{align}
& \mathbf{F}=F\cos \alpha \mathbf{i}+F\cos (90-\alpha )\mathbf{j} \\
& =F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
\end{align}
\displaystyle F\cos \alpha is one component of the force. If i is horizontal, \displaystyle F\cos \alpha is called the horizontal component of the force.
\displaystyle F\sin \alpha
is another component of the force. If j is vertical,
\displaystyle F\sin \alpha
is called the vertical component of the force.
Example 4.1
Express each of the forces given below in the form ai + bj.
Solution
(a)
\displaystyle 20\cos 40{}^\circ \mathbf{i}+20\sin 40{}^\circ \mathbf{j}
(b)
\displaystyle -80\cos 30{}^\circ \mathbf{i}+80\sin 30{}^\circ \mathbf{j}
Note the negative sign here in the first term.
Example 4.2
Express the force shown below as a vector in terms of i and j.
Solution
\displaystyle 28\cos 30{}^\circ \mathbf{i}-28\sin 30{}^\circ \mathbf{j}
Note the negative sign in the second term.
Example 4.3
Solution
\displaystyle -50\cos 44{}^\circ \mathbf{i}-50\sin 44{}^\circ \mathbf{j}
Note that here both terms are negative.
Example 4.4
Find the magnitude of the force (4i - 8j) N. Draw a diagram to show the direction of this force.
Solution
The magnitude, FN , of the force is given by,
\displaystyle F=\sqrt{{{4}^{2}}+{{8}^{2}}}=\sqrt{80}=8.94\text{ N (to 3sf)}
The angle, , is given by,
\displaystyle \theta ={{\tan }^{-1}}\left( \frac{8}{4} \right)=63.4{}^\circ
Example 4.5
Find the magnitude and direction of the resultant of the four forces shown in the diagram.
Solution
Force Vector Form 20 N \displaystyle 20\cos 50{}^\circ \mathbf{i}+20\sin 50{}^\circ \mathbf{j}
18 N \displaystyle -18\mathbf{j}
25 N \displaystyle -25\cos 20{}^\circ \mathbf{i}-25\sin 20{}^\circ \mathbf{j}
15 N \displaystyle -15\cos 30{}^\circ \mathbf{i}+15\sin 30{}^\circ \mathbf{j}
\displaystyle \begin{align} & \text{Resultant Force }=\text{ }\left( 20\cos 50{}^\circ -25\cos 20{}^\circ -15\cos 30{}^\circ \right)\mathbf{i}+\left( 20\sin 50{}^\circ -18-25\sin 20{}^\circ +15\sin 30{}^\circ \right)\mathbf{j} \\ & =-23.627\mathbf{i}-3.730\mathbf{j} \end{align}
The magnitude is given by:
\displaystyle \sqrt{{{23.627}^{2}}+{{3.730}^{2}}}=23.9\text{ N (to 3sf)}
The angle can be found using tan.
\displaystyle \begin{align}
& \tan \theta =\frac{3.730}{23.627} \\
& \theta =9.0{}^\circ
\end{align}