Solution 4.7a
From Mechanics
Line 2: | Line 2: | ||
& \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} | & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
<math>F1=100\ \text{N}</math> | <math>F1=100\ \text{N}</math> | ||
Line 9: | Line 8: | ||
</math> | </math> | ||
this gives | this gives | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 17: | Line 15: | ||
& =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ | & =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
- | |||
<math>F2=90\ \text{N}</math> | <math>F2=90\ \text{N}</math> | ||
Line 25: | Line 21: | ||
</math> | </math> | ||
this gives | this gives | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 32: | Line 27: | ||
\mathbf{j}=90\times \left(-0\textrm{.}342 \right)\mathbf{i}+90\times 0\textrm{.}94\mathbf{j} \\ | \mathbf{j}=90\times \left(-0\textrm{.}342 \right)\mathbf{i}+90\times 0\textrm{.}94\mathbf{j} \\ | ||
& =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ | & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | <math>F3=80\ \text{N}</math> | ||
+ | and | ||
+ | <math>\alpha 3=-90{}^\circ | ||
+ | </math> | ||
+ | this gives | ||
+ | |||
+ | <math>\begin{align} | ||
+ | & \mathbf{F}3=80\cos \left(-90{}^\circ \right) | ||
+ | \mathbf{i}+80\sin \left(-90{}^\circ \right) | ||
+ | \mathbf{j}=80\times 0\mathbf{i}+80\times \left(-1\right)\mathbf{j} \\ | ||
+ | & =-80\mathbf{j}\ \text{N}\\ | ||
\end{align}</math> | \end{align}</math> |
Current revision
\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}
\displaystyle F1=100\ \text{N} and \displaystyle \alpha 1=30{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}1=100\cos 30{}^\circ \mathbf{i}+100\sin 30{}^\circ \mathbf{j}=100\times 0\textrm{.}866\mathbf{i}+100\times 0\textrm{.}5\mathbf{j} \\ & =86\textrm{.}6\mathbf{i}+50\mathbf{j}\ \text{N}\\ \end{align}
\displaystyle F2=90\ \text{N} and \displaystyle \alpha 2=180{}^\circ-70{}^\circ=110{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}2=90\cos 110 {}^\circ \mathbf{i}+90\sin 110 {}^\circ \mathbf{j}=90\times \left(-0\textrm{.}342 \right)\mathbf{i}+90\times 0\textrm{.}94\mathbf{j} \\ & =-30\textrm{.}8\mathbf{i}+84\textrm{.}6\mathbf{j} \ \text{N}\\ \end{align}
\displaystyle F3=80\ \text{N} and \displaystyle \alpha 3=-90{}^\circ this gives
\displaystyle \begin{align} & \mathbf{F}3=80\cos \left(-90{}^\circ \right) \mathbf{i}+80\sin \left(-90{}^\circ \right) \mathbf{j}=80\times 0\mathbf{i}+80\times \left(-1\right)\mathbf{j} \\ & =-80\mathbf{j}\ \text{N}\\ \end{align}