Solution 4.6b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>\begin{align} & \mathbf{F}1=37\textrm{.}6\mathbf{i}+13\textrm{.}7\mathbf{j}\ \text{N}\\ \end{align}</math> <math>\begin{align} & \mathbf{F}2=43\textrm{.}3\mathbf{i}+25\mathbf{j} \...)
Current revision (15:48, 23 March 2010) (edit) (undo)
 
Line 2: Line 2:
& \mathbf{F}1=37\textrm{.}6\mathbf{i}+13\textrm{.}7\mathbf{j}\ \text{N}\\
& \mathbf{F}1=37\textrm{.}6\mathbf{i}+13\textrm{.}7\mathbf{j}\ \text{N}\\
\end{align}</math>
\end{align}</math>
- 
<math>\begin{align}
<math>\begin{align}
& \mathbf{F}2=43\textrm{.}3\mathbf{i}+25\mathbf{j} \ \text{N}\\
& \mathbf{F}2=43\textrm{.}3\mathbf{i}+25\mathbf{j} \ \text{N}\\
\end{align}</math>
\end{align}</math>
 +
 +
Resultant force=
 +
<math>F1+F2=\left( 37\textrm{.}6+43\textrm{.}3 \right)\mathbf{i}+\left( 13\textrm{.}7-25 \right)\mathbf{j}=80\textrm{.}9\mathbf{i}-11\textrm{.}3\mathbf{j}\ \text{N}</math>
 +
 +
 +
This vector has magnitude
 +
<math>\sqrt{{{80\textrm{.}9}^{2}}+{{\left( -11\textrm{.}3 \right)}^{2}}} \ \text{=81}\text{.7}\ \text{N}</math>
 +
 +
using
 +
 +
<math>{{F}^{2}}={{H}^{2}}+{{V}^{2}}</math>
 +
 +
where
 +
 +
<math>H=80\textrm{.}9\ \text{N},\ \ V=-11\textrm{.}3\ \text{N}</math>

Current revision

\displaystyle \begin{align} & \mathbf{F}1=37\textrm{.}6\mathbf{i}+13\textrm{.}7\mathbf{j}\ \text{N}\\ \end{align}

\displaystyle \begin{align} & \mathbf{F}2=43\textrm{.}3\mathbf{i}+25\mathbf{j} \ \text{N}\\ \end{align}

Resultant force= \displaystyle F1+F2=\left( 37\textrm{.}6+43\textrm{.}3 \right)\mathbf{i}+\left( 13\textrm{.}7-25 \right)\mathbf{j}=80\textrm{.}9\mathbf{i}-11\textrm{.}3\mathbf{j}\ \text{N}


This vector has magnitude \displaystyle \sqrt{{{80\textrm{.}9}^{2}}+{{\left( -11\textrm{.}3 \right)}^{2}}} \ \text{=81}\text{.7}\ \text{N}

using

\displaystyle {{F}^{2}}={{H}^{2}}+{{V}^{2}}

where

\displaystyle H=80\textrm{.}9\ \text{N},\ \ V=-11\textrm{.}3\ \text{N}