Solution 4.6a

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>\begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}</math>)
Line 1: Line 1:
<math>\begin{align}
<math>\begin{align}
& \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
& \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j}
 +
\end{align}</math>
 +
 +
 +
<math>F1=40\ \text{N}</math>
 +
and
 +
<math>\alpha 1=20{}^\circ
 +
</math>
 +
this gives
 +
 +
 +
<math>\begin{align}
 +
& \mathbf{F}1=40\cos 20{}^\circ
 +
\mathbf{i}+40\sin 20{}^\circ
 +
\mathbf{j}=40\times 0.94\mathbf{i}+40\times 0.342\mathbf{j} \\
 +
& =37.6\mathbf{i}+13.7\mathbf{j} \\
 +
\end{align}</math>
 +
 +
 +
 +
<math>F2=50\ \text{N}</math>
 +
and
 +
<math>\alpha 2=-30{}^\circ
 +
</math>
 +
this gives
 +
 +
 +
<math>\begin{align}
 +
& \mathbf{F}2=50\cos \left( -30
 +
\right) {}^\circ
 +
\mathbf{i}+50\sin \left( -30 \right) {}^\circ
 +
\mathbf{j}=50\times 0.866\mathbf{i}-50\times 0.50\mathbf{j} \\
 +
& =43.3\mathbf{i}+25\mathbf{j} \\
\end{align}</math>
\end{align}</math>

Revision as of 15:21, 23 March 2010

\displaystyle \begin{align} & \mathbf{F}=F\cos \alpha \mathbf{i}+F\sin \alpha \mathbf{j} \end{align}


\displaystyle F1=40\ \text{N} and \displaystyle \alpha 1=20{}^\circ this gives


\displaystyle \begin{align} & \mathbf{F}1=40\cos 20{}^\circ \mathbf{i}+40\sin 20{}^\circ \mathbf{j}=40\times 0.94\mathbf{i}+40\times 0.342\mathbf{j} \\ & =37.6\mathbf{i}+13.7\mathbf{j} \\ \end{align}


\displaystyle F2=50\ \text{N} and \displaystyle \alpha 2=-30{}^\circ this gives


\displaystyle \begin{align} & \mathbf{F}2=50\cos \left( -30 \right) {}^\circ \mathbf{i}+50\sin \left( -30 \right) {}^\circ \mathbf{j}=50\times 0.866\mathbf{i}-50\times 0.50\mathbf{j} \\ & =43.3\mathbf{i}+25\mathbf{j} \\ \end{align}