19. Variable acceleration II
From Mechanics
Line 47: | Line 47: | ||
First integrate the acceleration to obtain the velocity. | First integrate the acceleration to obtain the velocity. | ||
- | <math>v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{2}}}{40}+{{c}_{1}}</math> | + | <math>v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{\ 2}}}{40}+{{c}_{1}}</math> |
To find the value of the constant | To find the value of the constant | ||
Line 59: | Line 59: | ||
Hence the velocity is: | Hence the velocity is: | ||
- | <math>v=4t-\frac{{{t}^{2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}</math> | + | <math>v=4t-\frac{{{t}^{\ 2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}</math> |
The displacement of the particle can be found by integrating the velocity: | The displacement of the particle can be found by integrating the velocity: | ||
- | <math>s=\int{\left( 4t-\frac{{{t}^{2}}}{40} \right)}dt=2{{t}^{2}}-\frac{{{t}^{3}}}{120}+{{c}_{2}}</math> | + | <math>s=\int{\left( 4t-\frac{{{t}^{\ 2}}}{40} \right)}dt=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}+{{c}_{2}}</math> |
To find the constant | To find the constant | ||
Line 77: | Line 77: | ||
is given by: | is given by: | ||
- | <math>s=2{{t}^{2}}-\frac{{{t}^{3}}}{120}\text{ m}</math> | + | <math>s=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}\text{ m}</math> |
To find the distance travelled substitute | To find the distance travelled substitute | ||
Line 105: | Line 105: | ||
<math>\begin{align} | <math>\begin{align} | ||
& \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\ | & \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\ | ||
- | & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+{{c}_{2}} \right)\mathbf{j} | + | & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
Line 118: | Line 118: | ||
so that the velocity is given by: | so that the velocity is given by: | ||
- | <math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math> | + | <math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math> |
b) Integrating the velocity gives the position vector: | b) Integrating the velocity gives the position vector: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0\textrm{.}5 \right)}dt\mathbf{j} \\ | + | & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\mathbf{j} \\ |
- | & =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} | + | & =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
Line 137: | Line 137: | ||
Hence the position vector is: | Hence the position vector is: | ||
- | <math>\mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t \right)\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}</math> |
Substituting | Substituting | ||
Line 143: | Line 143: | ||
, gives the required position vector. | , gives the required position vector. | ||
- | <math>\mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math> |
The distance from the origin can now be calculated, by finding the magnitude of the position vector. | The distance from the origin can now be calculated, by finding the magnitude of the position vector. | ||
Line 181: | Line 181: | ||
<math>\begin{align} | <math>\begin{align} | ||
& \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\ | & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\ | ||
- | & =\left( \frac{3}{5}{{t}^{2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}+{{c}_{2}} \right)\mathbf{j} | + | & =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
Line 194: | Line 194: | ||
Hence the velocity is given by | Hence the velocity is given by | ||
- | <math>\mathbf{v}=\left( \frac{3}{5}{{t}^{2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math> | + | <math>\mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}</math> |
c) Integrating the velocity gives the position vector: | c) Integrating the velocity gives the position vector: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{2}}}{5}-3 \right)}dt\mathbf{j} \\ | + | & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\mathbf{j} \\ |
- | & =\left( \frac{{{t}^{3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} | + | & =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
Line 213: | Line 213: | ||
Hence the position vector is given by: | Hence the position vector is given by: | ||
- | <math>\mathbf{r}=\left( \frac{{{t}^{3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t \right)\mathbf{j} \text{ m}</math> | + | <math>\mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}</math> |
Revision as of 13:02, 20 February 2010
Theory | Exercises |
Key Points
\displaystyle \begin{align}
& v=\int{a}dt \\ & s=\int{v}dt \\ \end{align} | \displaystyle \begin{align}
& \mathbf{v}=\int{\mathbf{a}}dt \\ & \mathbf{r}=\int{\mathbf{v}}dt \\ \end{align} |
Don't forget to evaluate constants of integration.
The acceleration, \displaystyle a , of a particle, at time \displaystyle t seconds is given by:
\displaystyle a=4-\frac{t}{20} \displaystyle \text{m}{{\text{s}}^{-2}}.
This model is valid for \displaystyle 0\le t\le 80. Given that the particle starts at rest, find the distance travelled by the particle when \displaystyle t=\text{ 8}0 .
Solution
First integrate the acceleration to obtain the velocity.
\displaystyle v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{\ 2}}}{40}+{{c}_{1}}
To find the value of the constant \displaystyle {{c}_{1}} , note that the particle is initially at rest, so that \displaystyle v=0 when \displaystyle t=0. Substituting these values shows that \displaystyle {{c}_{1}}=0. Hence the velocity is:
\displaystyle v=4t-\frac{{{t}^{\ 2}}}{40} \text{ m}{{\text{s}}^{\text{-1}}}
The displacement of the particle can be found by integrating the velocity:
\displaystyle s=\int{\left( 4t-\frac{{{t}^{\ 2}}}{40} \right)}dt=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}+{{c}_{2}}
To find the constant \displaystyle {{c}_{2}} , assume that the particle starts at the origin, so that \displaystyle s=0 when \displaystyle t=0. Hence \displaystyle {{c}_{2}}=0 and the displacement at time \displaystyle t is given by:
\displaystyle s=2{{t}^{\ 2}}-\frac{{{t}^{\ 3}}}{120}\text{ m}
To find the distance travelled substitute \displaystyle t=80.
\displaystyle s=2\times {{80}^{2}}-\frac{{{80}^{3}}}{120}=8530\text{ m (to 3sf)}
A boat has an initial velocity of \displaystyle 0\textrm{.}5\mathbf{j} \text{ m}{{\text{s}}^{-1}} and experiences an acceleration of \displaystyle \left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right) \displaystyle \text{m}{{\text{s}}^{-2}}, at time \displaystyle t seconds. Assume that the boat is initially at the origin. The unit vector \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are directed east and north respectively.
a) Find the velocity of the boat at time \displaystyle t.
b) Find the distance of the boat from the origin when \displaystyle t=\text{ 12}0.
Solution
a) Integrate the acceleration to obtain the velocity:
\displaystyle \begin{align} & \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\ & =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+{{c}_{2}} \right)\mathbf{j} \end{align}
When \displaystyle t=0,
\displaystyle \mathbf{v}=0\textrm{.}5\mathbf{j}. These values can be substituted to give \displaystyle {{c}_{1}}=0 and \displaystyle {{c}_{2}}=0\textrm{.}5, so that the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
b) Integrating the velocity gives the position vector:
\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{\ 2}}}{100}+0\textrm{.}5 \right)}dt\mathbf{j} \\ & =\left( \frac{3{{t}^{\ 2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} \end{align}
The boat is initially at the origin, so when \displaystyle t=0, the boat has position vector \displaystyle 0\mathbf{i}+0\mathbf{j}. Substituting these values gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is:
\displaystyle \mathbf{r}=\left( \frac{3{{t}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{\ 3}}}{300}+0\textrm{.}5t \right)\mathbf{j}
Substituting \displaystyle t=\text{12}0 , gives the required position vector.
\displaystyle \mathbf{r}=\left( \frac{3\times {{120}^{\ 2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
\displaystyle s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}
At time \displaystyle t seconds the resultant force on a particle, of mass 250 kg is \displaystyle \left( 300t\mathbf{i}-400t\mathbf{j} \right)N. Initially the particle is at the origin and is moving with velocity (2\displaystyle \mathbf{i} - 3\displaystyle \mathbf{j}) \displaystyle \text{m}{{\text{s}}^{-1}}.
a) Find the acceleration at time \displaystyle t.
b) Find the velocity of the particle at time \displaystyle t.
c) Find the position vector of the particle at time \displaystyle t.
Solution
a) Using Newton’s second Law, \displaystyle \mathbf{F}=m\mathbf{a}, gives:
\displaystyle \begin{align} & 300t\mathbf{i}-400t\mathbf{j}=250\mathbf{a} \\ & \mathbf{a}=\frac{6}{5}t\mathbf{i}-\frac{8}{5}t\mathbf{j} \text{ m}{{\text{s}}^{\text{-2}}} \\ \end{align}
b) Integrating the acceleration gives the velocity:
\displaystyle \begin{align} & \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\ & =\left( \frac{3}{5}{{t}^{\ 2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}+{{c}_{2}} \right)\mathbf{j} \end{align}
As the initial velocity is \displaystyle 2\mathbf{i}-3\mathbf{j}, this can be used with \displaystyle t=0, to show that \displaystyle {{c}_{1}}=2 and \displaystyle {{c}_{2}}=-3. Hence the velocity is given by
\displaystyle \mathbf{v}=\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)\mathbf{j} \text{ m}{{\text{s}}^{\text{-1}}}
c) Integrating the velocity gives the position vector:
\displaystyle \begin{align} & \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{\ 2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{\ 2}}}{5}-3 \right)}dt\mathbf{j} \\ & =\left( \frac{{{t}^{\ 3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j} \end{align}
Note that the particle is initially at the origin. So using \displaystyle \mathbf{r}=0\mathbf{i}+0\mathbf{j} when \displaystyle t=0, gives \displaystyle {{c}_{3}}=0 and \displaystyle {{c}_{4}}=0. Hence the position vector is given by:
\displaystyle \mathbf{r}=\left( \frac{{{t}^{\ 3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{\ 3}}}{15}-3t \right)\mathbf{j} \text{ m}