13. Moments

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Line 33: Line 33:
[[Image:ex13.1whole.GIF]]
[[Image:ex13.1whole.GIF]]
-
Find the moment of each force shown below about the point O.
 
-
[[Image:ex13.1.GIF]]
 
- 
-
Solution
 
- 
-
(a)
 
-
 
-
<math>20\times 0.8=16</math>
 
- 
-
Moment is -16 Nm
 
- 
- 
-
(b)
 
-
 
-
<math>12\times 1.2=14.4</math>
 
- 
-
Moment is 14.4 Nm
 
-
 
Line 59: Line 41:
[[Image:ex13.2.GIF]]
[[Image:ex13.2.GIF]]
-
Find the moment of each force shown below about the point O.
+
Example 13.3
-
(a) (b)
+
- 
- 
- 
- 
- 
-
Solution
 
-
(a) (b)
 
- 
- 
- 
- 
- 
- 
- 
- 
- 
-
 
-
<math>40\times 3\sin 60{}^\circ =104</math>
 
-
 
-
<math>100\times 2\sin 20{}^\circ =68.4</math>
 
- 
- 
-
Moment is 104 Nm (to 3 sf) Moment is 68.4 Nm (to 3 sf)
 
- 
-
Example 13.3
 
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
-
 
+
[[Image:ex13.3.GIF]]
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
-
 
+
Solution
Solution

Revision as of 19:22, 17 September 2009

       Theory          Exercises      


Key Points

The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O.


Image:T13.1.GIF

\displaystyle \text{Moment }=Fd


Image:T13.2.GIF

\displaystyle \text{Moment }=Fd\sin \theta


Clockwise moments are negative. Anti-clockwise moments are positive.


Example 13.1

Image:ex13.1whole.GIF



Example 13.2

Image:ex13.2.GIF

Example 13.3

For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.


Image:ex13.3.GIF

Solution

Force Moment 5N at O \displaystyle 5\times 0=0

8 N \displaystyle -8\times 1.2=-9.6

7 N \displaystyle 7\times 0=0

6 N \displaystyle -6\times 0.5=-3

5 N \displaystyle 5\times 1.2=6

4 N \displaystyle 4\times 0.5=2

Total Moment \displaystyle 0-9.6+0-3+6+2=-4.6\text{ Nm}