Solution 19.5a
From Mechanics
(Difference between revisions)
Line 14: | Line 14: | ||
& 5=20-\frac{k\times {{40}^{2}}}{5} \\ | & 5=20-\frac{k\times {{40}^{2}}}{5} \\ | ||
& \\ | & \\ | ||
- | & | + | & 800k=15 \\ |
& \\ | & \\ | ||
- | & k=\frac{15}{ | + | & k=\frac{15}{800}=\frac{3}{160} |
\end{align}</math> | \end{align}</math> | ||
Note that substituting for <math>k</math> and <math>c</math> in the expression for <math>v</math> we get | Note that substituting for <math>k</math> and <math>c</math> in the expression for <math>v</math> we get | ||
- | <math>v=20-\frac{3{{t}^{2}}}{ | + | <math>v=20-\frac{3{{t}^{2}}}{320}</math> |
Current revision
\displaystyle \begin{align} & v=\int{adt} \\ & \\ & =\int{\left( -kt \right)dt} \\ & \\ & =-\frac{k{{t}^{2}}}{2}+c \\ & \\ & t=0,\ v=20\ \Rightarrow \ c=20 \\ & \\ & v=20-\frac{k{{t}^{2}}}{2} \\ & \\ & \text{ Using}\quad t=40,\ v=5\quad \text{gives} \\ & \\ & 5=20-\frac{k\times {{40}^{2}}}{5} \\ & \\ & 800k=15 \\ & \\ & k=\frac{15}{800}=\frac{3}{160} \end{align}
Note that substituting for \displaystyle k and \displaystyle c in the expression for \displaystyle v we get
\displaystyle v=20-\frac{3{{t}^{2}}}{320}