Solution 18.8b
From Mechanics
(Difference between revisions)
(New page: <math>\begin{align} & \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{4-\frac{4t}{5...) |
|||
Line 1: | Line 1: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{ | + | & \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{8-\frac{4t}{5}+\frac{{{t}^{2}}}{25}} \\ |
\end{align}</math> | \end{align}</math> |
Current revision
\displaystyle \begin{align} & \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{8-\frac{4t}{5}+\frac{{{t}^{2}}}{25}} \\ \end{align}