Solution 17.4b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: As the brick has no speed at the start <math>\text {KE = KE gained}</math>. Using Energy lost due to friction = Work done against friction we get, <math>\begin{align} & \text{PE lost - ...)
Current revision (18:53, 10 March 2011) (edit) (undo)
 
Line 14: Line 14:
<math>\begin{align}
<math>\begin{align}
-
& KE=\text{2}\times \text{9}\text{.8}\times \text{3}.2-1\text{0}\times \text{3}\text{.2}=\text{30}\text{.72 J} \\
+
& KE=\text{2}\times \text{9}\text{.8}\times \text{3}\textrm{.}2-1\text{0}\times \text{3}\text{.2}=\text{30}\text{.72 J} \\
& \\
& \\
& \frac{\text{1}}{\text{2}}\times 2{{v}^{2}}=30\textrm{.}72 \\
& \frac{\text{1}}{\text{2}}\times 2{{v}^{2}}=30\textrm{.}72 \\
& v=5\textrm{.}54\text{ m}{{\text{s}}^{\text{-1}}}
& v=5\textrm{.}54\text{ m}{{\text{s}}^{\text{-1}}}
\end{align}</math>
\end{align}</math>

Current revision

As the brick has no speed at the start

\displaystyle \text {KE = KE gained}.

Using Energy lost due to friction = Work done against friction we get,

\displaystyle \begin{align} & \text{PE lost - KE gained = Work done against friction} \\ & \\ & \text{which}\ \text{gives} \\ & \\ & \text{KE = KE gained = PE lost - Work done against friction} \\ \end{align}

\displaystyle \begin{align} & KE=\text{2}\times \text{9}\text{.8}\times \text{3}\textrm{.}2-1\text{0}\times \text{3}\text{.2}=\text{30}\text{.72 J} \\ & \\ & \frac{\text{1}}{\text{2}}\times 2{{v}^{2}}=30\textrm{.}72 \\ & v=5\textrm{.}54\text{ m}{{\text{s}}^{\text{-1}}} \end{align}