Solution 7.4c
From Mechanics
(Difference between revisions)
(New page: We insert <math>t=0\ \text{s}</math> in the expression for the position vector to find the point where the frisby waqs thrown from. <math>\begin{align} & \mathbf{r}=\left( 5\times 0-{{0...) |
|||
Line 9: | Line 9: | ||
& =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\ | & =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\ | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
+ | The point where the frisby was thrown is the origin. This is obtained by putting | ||
+ | <math>t=0</math> | ||
+ | in the expression for | ||
+ | <math>\mathbf{r}</math> | ||
+ | giving <math>\mathbf{r} =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}</math>. |
Revision as of 14:42, 14 May 2010
We insert \displaystyle t=0\ \text{s} in the expression for the position vector to find the point where the frisby waqs thrown from.
\displaystyle \begin{align}
& \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\
& \\
& =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\
\end{align}
The point where the frisby was thrown is the origin. This is obtained by putting \displaystyle t=0 in the expression for \displaystyle \mathbf{r} giving \displaystyle \mathbf{r} =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}.