Solution 8.6b
From Mechanics
Line 20: | Line 20: | ||
<math>\sqrt{{{7}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{13}=3\textrm{.}6\ \text{m}</math> | <math>\sqrt{{{7}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{13}=3\textrm{.}6\ \text{m}</math> | ||
+ | |||
+ | In the second part the boat travel with constant velocity <math>6\mathbf{i}-8\mathbf{j}</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
Thus during the first part the boat has travelled a distance 3.6 m. | Thus during the first part the boat has travelled a distance 3.6 m. |
Revision as of 19:57, 14 April 2010
Here we use
\displaystyle \mathbf{r}=\frac{1}{2}(\mathbf{u}+\mathbf{v})t+{{\mathbf{r}}_{0}}
in the first part.
According to the text
\displaystyle \mathbf{u}=\mathbf{i}+2\mathbf{j}
\displaystyle \mathbf{v}=6\mathbf{i}-8\mathbf{j}
We assume the starting point is the origin so that \displaystyle {{\mathbf{r}}_{0}}=0.
At \displaystyle t=10
\displaystyle \mathbf{r}=\frac{1}{2}(\mathbf{i}+2\mathbf{j}+6\mathbf{i}-8\mathbf{j})t=(3\textrm{.}5\mathbf{i}-3\mathbf{j}) \times 10=35\mathbf{i}-30\mathbf{j}=(7\mathbf{i}-6\mathbf{j}) \times 5
The distance is the magnitude of this vector
\displaystyle \sqrt{{{7}^{2}}+{{\left( -6 \right)}^{2}}}=\sqrt{13}=3\textrm{.}6\ \text{m}
In the second part the boat travel with constant velocity \displaystyle 6\mathbf{i}-8\mathbf{j}
Thus during the first part the boat has travelled a distance 3.6 m.