Solution 8.6b
From Mechanics
(Difference between revisions)
(New page: Here we use <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}} </math> According to the text <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> We assume th...) |
|||
| Line 7: | Line 7: | ||
<math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> | <math>\mathbf{u}=\mathbf{i}+2\mathbf{j}</math> | ||
| + | and part a) gave | ||
| + | |||
| + | <math>\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}</math> | ||
We assume the starting point is the origin so that <math>{{\mathbf{r}}_{0}}=0</math>. | We assume the starting point is the origin so that <math>{{\mathbf{r}}_{0}}=0</math>. | ||
| Line 12: | Line 15: | ||
At <math>t=10+40=50</math> we obtain | At <math>t=10+40=50</math> we obtain | ||
| - | + | <math>\mathbf{r}=(\mathbf{i}+2\mathbf{j}) \times 50+\frac{1}{2}(\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j} )\times{{50}^{\ 2}}</math> | |
The distance is the magnitude of this vector | The distance is the magnitude of this vector | ||
Revision as of 19:35, 14 April 2010
Here we use
\displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+{{\mathbf{r}}_{0}}
According to the text
\displaystyle \mathbf{u}=\mathbf{i}+2\mathbf{j}
and part a) gave
\displaystyle \mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j}
We assume the starting point is the origin so that \displaystyle {{\mathbf{r}}_{0}}=0.
At \displaystyle t=10+40=50 we obtain
\displaystyle \mathbf{r}=(\mathbf{i}+2\mathbf{j}) \times 50+\frac{1}{2}(\mathbf{a}=0\textrm{.}5\mathbf{i}-\mathbf{j} )\times{{50}^{\ 2}}
The distance is the magnitude of this vector
