Solution 8.1a
From Mechanics
(Difference between revisions)
Line 12: | Line 12: | ||
<math>\begin{align} | <math>\begin{align} | ||
& \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ | & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ | ||
- | & = | + | & =40\mathbf{i}+45\mathbf{i}+35\mathbf{j}+400\mathbf{i}+350\mathbf{j} \\ \\ |
- | & = | + | & =485\mathbf{i}+385\mathbf{j} \ \text{m} |
\end{align}</math> | \end{align}</math> |
Revision as of 17:20, 12 April 2010
In this case we have \displaystyle \mathbf{u}=4\mathbf{i} , \displaystyle \mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j} and \displaystyle {{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}.
Substituting these into the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+400\mathbf{i}+350\mathbf{j} gives the position vector of the ball at time \displaystyle 10 as:
\displaystyle \begin{align} & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ & =40\mathbf{i}+45\mathbf{i}+35\mathbf{j}+400\mathbf{i}+350\mathbf{j} \\ \\ & =485\mathbf{i}+385\mathbf{j} \ \text{m} \end{align}