Solution 8.1a
From Mechanics
(Difference between revisions)
(New page: In this case we have <math>\mathbf{u}=4\mathbf{i}</math> , <math>\mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j}</math> and <math>{{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}</math>. Substit...) |
|||
Line 7: | Line 7: | ||
Substituting these into the equation | Substituting these into the equation | ||
- | <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+ | + | <math>\mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+400\mathbf{i}+350\mathbf{j}</math> |
gives the position vector of the ball at time <math>10</math> as: | gives the position vector of the ball at time <math>10</math> as: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{r}=(4\mathbf{i}) | + | & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ |
& =8t\mathbf{i}+2t\mathbf{j}-5{{t}^{\ 2}}\mathbf{j}+1\textrm{.}5\mathbf{j} \\ | & =8t\mathbf{i}+2t\mathbf{j}-5{{t}^{\ 2}}\mathbf{j}+1\textrm{.}5\mathbf{j} \\ | ||
& =(8t)\mathbf{i}+(1\textrm{.}5+2t-5{{t}^{\ 2}})\mathbf{j} \ \text{m} | & =(8t)\mathbf{i}+(1\textrm{.}5+2t-5{{t}^{\ 2}})\mathbf{j} \ \text{m} | ||
\end{align}</math> | \end{align}</math> |
Revision as of 17:15, 12 April 2010
In this case we have \displaystyle \mathbf{u}=4\mathbf{i} , \displaystyle \mathbf{a}=0.9\mathbf{i}+0.7\mathbf{j} and \displaystyle {{\mathbf{r}}_{0}}=400\mathbf{i}+350\mathbf{j}.
Substituting these into the equation \displaystyle \mathbf{r}=\mathbf{u}t+\frac{1}{2}\mathbf{a}{{t}^{\ 2}}+400\mathbf{i}+350\mathbf{j} gives the position vector of the ball at time \displaystyle 10 as:
\displaystyle \begin{align} & \mathbf{r}=(4\mathbf{i})\times 10+\frac{1}{2}(0.9\mathbf{i}+0.7\mathbf{j})\times {{10}^{\ 2}}+400\mathbf{i}+350\mathbf{j} \\ & =8t\mathbf{i}+2t\mathbf{j}-5{{t}^{\ 2}}\mathbf{j}+1\textrm{.}5\mathbf{j} \\ & =(8t)\mathbf{i}+(1\textrm{.}5+2t-5{{t}^{\ 2}})\mathbf{j} \ \text{m} \end{align}