Solution 3.13bc

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: Vertically the forces on the tank are in equilibrium <math>\begin{align} & \uparrow \ R-mg=0 \\ & R=800\times 9\textrm{.}8=7840\ \text{N} \\ \end{align}</math> The maximum friction is ...)
Current revision (10:33, 22 March 2010) (edit) (undo)
(New page: Vertically the forces on the tank are in equilibrium <math>\begin{align} & \uparrow \ R-mg=0 \\ & R=800\times 9\textrm{.}8=7840\ \text{N} \\ \end{align}</math> The maximum friction is ...)
 

Current revision

Vertically the forces on the tank are in equilibrium

\displaystyle \begin{align} & \uparrow \ R-mg=0 \\ & R=800\times 9\textrm{.}8=7840\ \text{N} \\ \end{align}

The maximum friction is thus,

\displaystyle F=\mu R=0\textrm{.}6\times 7840=4704\ \text{N}

This is less than the force exerted by the rope. Thus resultant horisontal force is

\displaystyle \leftarrow \ 5000-4704=296\ \text{N}