Solution 2.8
From Mechanics
(New page: Consider a particle on the surface of the planet. <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}</math> where <math>F</math> is the gravitational force on a particle on the surface of t...) |
|||
Line 1: | Line 1: | ||
Consider a particle on the surface of the planet. | Consider a particle on the surface of the planet. | ||
- | <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{2}}}</math> | + | <math>F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\, 2}}}</math> |
where | where | ||
Line 21: | Line 21: | ||
- | <math>a=\frac{G{{m}_{1}}}{{{d}^{2}}}</math> | + | <math>a=\frac{G{{m}_{1}}}{{{d}^{\, 2}}}</math> |
Thus | Thus | ||
- | <math>{{d}^{2}}=\frac{G{{m}_{1}}}{a}</math> | + | <math>{{d}^{\, 2}}=\frac{G{{m}_{1}}}{a}</math> |
As | As | ||
Line 33: | Line 33: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & {{d}^{2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\ | + | & {{d}^{\, 2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\ |
& d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\ | & d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\ | ||
\end{align}</math> | \end{align}</math> |
Current revision
Consider a particle on the surface of the planet.
\displaystyle F=\frac{G{{m}_{1}}{{m}_{2}}}{{{d}^{\, 2}}}
where \displaystyle F is the gravitational force on a particle on the surface of the planet, in other words, its weight.
\displaystyle {{m}_{1}} is the mass of the planet, \displaystyle {{m}_{2}} is the mass of the particle and \displaystyle d is the radius of the planet.
As \displaystyle F={{m}_{2}}a where \displaystyle a is the acceleration of the particle very close to the surface of the planet,
\displaystyle a=\frac{G{{m}_{1}}}{{{d}^{\, 2}}}
Thus
\displaystyle {{d}^{\, 2}}=\frac{G{{m}_{1}}}{a}
As \displaystyle G=6\textrm{.}67\times {{10}^{-11}}\text{ k}{{\text{g}}^{\text{-1}}}{{\text{m}}^{\text{3}}}{{\text{s}}^{\text{-2}}} we get
\displaystyle \begin{align}
& {{d}^{\, 2}}=\frac{\left( 6\textrm{.}67\times {{10}^{-11}} \right)\times \left( 5\times {{10}^{20}} \right)}{{{3\textrm{.}2}^{{}}}}=\frac{33\textrm{.}35\times {{10}^{9}}}{3\textrm{.}2}=10\textrm{.}4\times {{10}^{9}}=1\textrm{.}04\times {{10}^{10}} \\
& d=\sqrt{1\textrm{.}04}\times {{10}^{5}}=1\textrm{.}02\times {{10}^{5}}\ \text{m=102}\ \text{km} \\
\end{align}