19. Variable acceleration II
From Mechanics
Line 97: | Line 97: | ||
'''[[Example 19.2]]''' | '''[[Example 19.2]]''' | ||
- | A boat has an initial velocity of 0.5j | + | A boat has an initial velocity of 0\textrm{.}5j <math>\text{m}{{\text{s}}^{-1}}</math> and experiences an acceleration of |
<math>\left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right)</math> | <math>\left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right)</math> | ||
<math>\text{m}{{\text{s}}^{-2}}</math>, at time | <math>\text{m}{{\text{s}}^{-2}}</math>, at time | ||
Line 125: | Line 125: | ||
<math>t=0</math>, | <math>t=0</math>, | ||
- | <math>\mathbf{v}=0.5\mathbf{j}</math>. | + | <math>\mathbf{v}=0\textrm{.}5\mathbf{j}</math>. |
These values can be substituted to give | These values can be substituted to give | ||
<math>{{c}_{1}}=0</math> | <math>{{c}_{1}}=0</math> | ||
and | and | ||
- | <math>{{c}_{2}}=0.5</math>, | + | <math>{{c}_{2}}=0\textrm{.}5</math>, |
so that the velocity is given by: | so that the velocity is given by: | ||
- | <math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+ | + | <math>\mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+\textrm{.}5 \right)\mathbf{j}</math> |
Line 140: | Line 140: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0.5 \right)}dt\mathbf{j} \\ | + | & \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0\textrm{.}5 \right)}dt\mathbf{j} \\ |
- | & =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0.5t+{{c}_{4}} \right)\mathbf{j} | + | & =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> | ||
Line 156: | Line 156: | ||
- | <math>\mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0.5t \right)\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t \right)\mathbf{j}</math> |
Line 164: | Line 164: | ||
- | <math>\mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0.5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math> | + | <math>\mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}</math> |
The distance from the origin can now be calculated, by finding the magnitude of the position vector. | The distance from the origin can now be calculated, by finding the magnitude of the position vector. | ||
Line 178: | Line 178: | ||
seconds the resultant force on a particle, of mass 250 kg is | seconds the resultant force on a particle, of mass 250 kg is | ||
<math>\left( 300t\mathbf{i}-400t\mathbf{j} \right)</math> | <math>\left( 300t\mathbf{i}-400t\mathbf{j} \right)</math> | ||
- | N. Initially the particle is at the origin and is moving with velocity (2<math>\mathbf{i}</math> - 3<math>\mathbf{j}</math>) | + | N. Initially the particle is at the origin and is moving with velocity (2<math>\mathbf{i}</math> - 3<math>\mathbf{j}</math>) <math>\text{m}{{\text{s}}^{-1}}</math>. |
a) Find the acceleration at time | a) Find the acceleration at time |
Revision as of 12:20, 19 November 2009
Theory | Exercises |
Key Points
\displaystyle \begin{align}
& v=\int{a}dt \\ & s=\int{v}dt \\ \end{align} | \displaystyle \begin{align}
& \mathbf{v}=\int{\mathbf{a}}dt \\ & \mathbf{r}=\int{\mathbf{v}}dt \\ \end{align} |
Don't forget to evaluate constants of integration.
The acceleration, \displaystyle a \displaystyle \text{m}{{\text{s}}^{-1}}, of a particle, at time \displaystyle t t seconds is given by:
\displaystyle a=4-\frac{t}{20} \displaystyle \text{m}{{\text{s}}^{-2}}.
This model is valid for \displaystyle 0\le t\le 80. Given that the particle starts at rest, find the distance travelled by the particle when \displaystyle t=\text{ 8}0 .
Solution
First integrate the acceleration to obtain the velocity.
\displaystyle v=\int{\left( 4-\frac{t}{20} \right)}dt=4t-\frac{{{t}^{2}}}{40}+{{c}_{1}}
To find the value of the constant
\displaystyle {{c}_{1}}
, note that the particle is initially at rest, so that
\displaystyle v=0
when
\displaystyle t=0.
Substituting these values shows that
\displaystyle {{c}_{1}}=0.
Hence the velocity is:
\displaystyle v=4t-\frac{{{t}^{2}}}{40}
The displacement of the particle can be found by integrating the velocity:
\displaystyle s=\int{\left( 4t-\frac{{{t}^{2}}}{40} \right)}dt=2{{t}^{2}}-\frac{{{t}^{3}}}{120}+{{c}_{2}}
To find the constant
\displaystyle {{c}_{2}}
, assume that the particle starts at the origin, so that
\displaystyle s=0
when
\displaystyle t=0.
Hence
\displaystyle {{c}_{2}}=0
and the displacement at time
\displaystyle t
is given by:
\displaystyle s=2{{t}^{2}}-\frac{{{t}^{3}}}{120}
To find the distance travelled substitute
\displaystyle t=80.
\displaystyle s=2\times {{80}^{2}}-\frac{{{80}^{3}}}{120}=8530\text{ m (to 3sf)}
A boat has an initial velocity of 0\textrm{.}5j \displaystyle \text{m}{{\text{s}}^{-1}} and experiences an acceleration of \displaystyle \left( \frac{3}{10}\mathbf{i}+\left( \frac{t}{50} \right)\mathbf{j} \right) \displaystyle \text{m}{{\text{s}}^{-2}}, at time \displaystyle t seconds. Assume that the boat is initially at the origin. The unit vector \displaystyle \mathbf{i} and \displaystyle \mathbf{j} are directed east and north respectively.
a) Find the velocity of the boat at time \displaystyle t .
b) Find the distance of the boat from the origin when \displaystyle t=\text{ 12}0 .
Solution
a) Integrate the acceleration to obtain the velocity:
\displaystyle \begin{align}
& \mathbf{v}=\int{\frac{3}{10}dt\mathbf{i}+\int{\left( \frac{t}{50} \right)dt\mathbf{j}}} \\
& =\left( \frac{3}{10}t+{{c}_{1}} \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+{{c}_{2}} \right)\mathbf{j}
\end{align}
When
\displaystyle t=0,
\displaystyle \mathbf{v}=0\textrm{.}5\mathbf{j}. These values can be substituted to give \displaystyle {{c}_{1}}=0 and \displaystyle {{c}_{2}}=0\textrm{.}5, so that the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{10}t \right)\mathbf{i}+\left( \frac{{{t}^{2}}}{100}+\textrm{.}5 \right)\mathbf{j}
b) Integrating the velocity gives the position vector:
\displaystyle \begin{align}
& \mathbf{r}=\int{\left( \frac{3}{10}t \right)dt}\mathbf{i}+\int{\left( \frac{{{t}^{2}}}{100}+0\textrm{.}5 \right)}dt\mathbf{j} \\
& =\left( \frac{3{{t}^{2}}}{20}+{{c}_{3}} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t+{{c}_{4}} \right)\mathbf{j}
\end{align}
The boat is initially at the origin, so when
\displaystyle t=0,
the boat has position vector
\displaystyle 0\mathbf{i}+0\mathbf{j}.
Substituting these values gives
\displaystyle {{c}_{3}}=0
and
\displaystyle {{c}_{4}}=0.
Hence the position vector is:
\displaystyle \mathbf{r}=\left( \frac{3{{t}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{t}^{3}}}{300}+0\textrm{.}5t \right)\mathbf{j}
Substituting
\displaystyle t=\text{12}0
, gives the required position vector.
\displaystyle \mathbf{r}=\left( \frac{3\times {{120}^{2}}}{20} \right)\mathbf{i}+\left( \frac{{{120}^{3}}}{300}+0\textrm{.}5\times 120 \right)\mathbf{j}=2160\mathbf{i}+5820\mathbf{j}
The distance from the origin can now be calculated, by finding the magnitude of the position vector.
\displaystyle s=\sqrt{{{2160}^{2}}+{{5820}^{2}}}=6210\text{ m (to 3sf)}
At time \displaystyle t seconds the resultant force on a particle, of mass 250 kg is \displaystyle \left( 300t\mathbf{i}-400t\mathbf{j} \right) N. Initially the particle is at the origin and is moving with velocity (2\displaystyle \mathbf{i} - 3\displaystyle \mathbf{j}) \displaystyle \text{m}{{\text{s}}^{-1}}.
a) Find the acceleration at time \displaystyle t .
b) Find the velocity of the particle at time \displaystyle t .
c) Find the position vector of the particle at time \displaystyle t.
Solution
a) Using Newton’s second Law, \displaystyle \mathbf{F}=m\mathbf{a}, gives:
\displaystyle \begin{align}
& 300t\mathbf{i}-400t\mathbf{j}=250\mathbf{a} \\
& \mathbf{a}=\frac{6}{5}t\mathbf{i}-\frac{8}{5}t\mathbf{j} \\
\end{align}
b) Integrating the acceleration gives the velocity:
\displaystyle \begin{align}
& \mathbf{v}=\int{\left( \frac{6}{5}t \right)dt\mathbf{i}+\int{\left( -\frac{8}{5}t \right)dt\mathbf{j}}} \\
& =\left( \frac{3}{5}{{t}^{2}}+{{c}_{1}} \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}+{{c}_{2}} \right)\mathbf{j}
\end{align}
As the initial velocity is
\displaystyle 2\mathbf{i}-3\mathbf{j},
this can be used with
\displaystyle t=0,
to show that
\displaystyle {{c}_{1}}=2
and
\displaystyle {{c}_{2}}=-3.
Hence the velocity is given by:
\displaystyle \mathbf{v}=\left( \frac{3}{5}{{t}^{2}}+2 \right)\mathbf{i}+\left( -\frac{4{{t}^{2}}}{5}-3 \right)\mathbf{j}
c) Integrating the velocity gives the position vector:
\displaystyle \begin{align}
& \mathbf{r}=\int{\left( \frac{3}{5}{{t}^{2}}+2 \right)}dt\mathbf{i}+\int{\left( -\frac{4{{t}^{2}}}{5}-3 \right)}dt\mathbf{j} \\
& =\left( \frac{{{t}^{3}}}{5}+2t+{{c}_{3}} \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t+{{c}_{4}} \right)\mathbf{j}
\end{align}
Note that the particle is initially at the origin. So using
\displaystyle \mathbf{r}=0\mathbf{i}+0\mathbf{j}
when
\displaystyle t=0,
gives
\displaystyle {{c}_{3}}=0
and
\displaystyle {{c}_{4}}=0.
Hence the position vector is given by:
\displaystyle \mathbf{r}=\left( \frac{{{t}^{3}}}{5}+2t \right)\mathbf{i}+\left( -\frac{4{{t}^{3}}}{15}-3t \right)\mathbf{j}