18. Exercises

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: __NOTOC__ {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | style="border-bottom:1px solid #797979" width="5px" |   {{Not selected tab|[[18. Variable accelerati...)
Line 6: Line 6:
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
 +
 +
 +
===Exercise 18.1===
 +
<div class="ovning">
 +
 +
As a car moves along a straight rod the distance,
 +
<math>s</math>
 +
metres, of a car from the origin at time
 +
<math>t</math>
 +
seconds is given by:
 +
 +
<math>s=\frac{{{t}^{3}}}{3}-\frac{{{t}^{4}}}{60}</math>
 +
for
 +
<math>0\le t\le 10</math>.
 +
 +
a) By differentiating, find an expression for the velocity of the car at time
 +
<math>t</math>.
 +
 +
b) Find an expression for the acceleration of the car at time
 +
<math>t</math>.
 +
 +
c) Find the times when the acceleration of the car is zero.
 +
 +
 +
 +
</div>{{#NAVCONTENT:Answer a|Answer 18.1a|Answer b|Answer 18.1b|Answer c|Answer 18.1c|Solution a|Solution 18.1a|Solution b|Solution 18.1b|Solution c|Solution 18.1c}}

Revision as of 13:47, 17 November 2009

       Theory          Exercises      


Exercise 18.1

As a car moves along a straight rod the distance, \displaystyle s metres, of a car from the origin at time \displaystyle t seconds is given by:

\displaystyle s=\frac{{{t}^{3}}}{3}-\frac{{{t}^{4}}}{60} for \displaystyle 0\le t\le 10.

a) By differentiating, find an expression for the velocity of the car at time \displaystyle t.

b) Find an expression for the acceleration of the car at time \displaystyle t.

c) Find the times when the acceleration of the car is zero.