17. Conservation of energy
From Mechanics
Line 33: | Line 33: | ||
- | <math>\text{KE}=\frac{1}{2}\times 0.3\times {{16}^{2}}=38.4\text{ J}</math> | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}</math> |
Line 39: | Line 39: | ||
- | <math>\text{KE}=\frac{1}{2}\times 0.3\times {{6}^{2}}=5.4\text{ J}</math> | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}</math> |
Line 55: | Line 55: | ||
- | <math>\text{KE}=\frac{1}{2}\times 0.02\times {{4}^{2}}=0.16\text{ J}</math> | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}</math> |
Line 61: | Line 61: | ||
- | <math>\text{KE}=\frac{1}{2}\times 0.02\times {{3}^{2}}=0.09\text{ J}</math> | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}</math> |
Line 68: | Line 68: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & \text{Energy Lost }=0.16-0.09 \\ | + | & \text{Energy Lost }=0\textrm{.}16-0\textrm{.}09 \\ |
- | & =0.07\text{ J} | + | & =0\textrm{.}07\text{ J} |
\end{align}</math> | \end{align}</math> | ||
+ | |||
+ | |||
'''[[Example 17.3]]''' | '''[[Example 17.3]]''' | ||
Line 91: | Line 93: | ||
<math>\begin{align} | <math>\begin{align} | ||
& \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\ | & \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\ | ||
- | & =500\times 9.8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\ | + | & =500\times 9\textrm{.}8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\ |
& =4900+36000 \\ | & =4900+36000 \\ | ||
& =40900\text{ J} | & =40900\text{ J} | ||
Line 101: | Line 103: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 40900=500\times 9.8\times 5+\text{KE} \\ | + | & 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\ |
& \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\ | & \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Line 109: | Line 111: | ||
<math>\begin{align} | <math>\begin{align} | ||
& 16400=\frac{1}{2}\times 500{{v}^{2}} \\ | & 16400=\frac{1}{2}\times 500{{v}^{2}} \\ | ||
- | & v=\sqrt{\frac{16400}{250}}=8.1\text{ m}{{\text{s}}^{\text{-1}}} \\ | + | & v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 118: | Line 120: | ||
<math>\begin{align} | <math>\begin{align} | ||
& 40900=\frac{1}{2}\times 500{{v}^{2}} \\ | & 40900=\frac{1}{2}\times 500{{v}^{2}} \\ | ||
- | & v=\sqrt{\frac{40900}{250}}=12.8\text{ m}{{\text{s}}^{\text{-1}}} \\ | + | & v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 126: | Line 128: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 40900=500\times 9.8\times 3+\text{KE} \\ | + | & 40900=500\times 9\textrm{.}8\times 3+\text{KE} \\ |
& \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\ | & \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Line 134: | Line 136: | ||
<math>\begin{align} | <math>\begin{align} | ||
& 26200=\frac{1}{2}\times 500{{v}^{2}} \\ | & 26200=\frac{1}{2}\times 500{{v}^{2}} \\ | ||
- | & v=\sqrt{\frac{26200}{250}}=10.2\text{ m}{{\text{s}}^{\text{-1}}} \\ | + | & v=\sqrt{\frac{26200}{250}}=10\textrm{.}2\text{ m}{{\text{s}}^{\text{-1}}} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 150: | Line 152: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 60\times 9.8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\ | + | & 60\times 9\textrm{.}8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\ |
& v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\ | & v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\ | ||
\end{align}</math> | \end{align}</math> | ||
Line 157: | Line 159: | ||
(b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy. | (b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy. | ||
- | <math>\text{EPE }=60\times 9.8\times 60=35280\text{ J}</math> | + | <math>\text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}</math> |
Revision as of 14:19, 30 September 2009
Theory | Exercises |
Key Results
Kinetic Energy \displaystyle \frac{1}{2}m{{v}^{2}}
Potential Energy mgh
Energy lost due to friction = Work Done Against Friction
A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 \displaystyle \text{m}{{\text{s}}^{-1}}. At its maximum height the ball travels at 6 \displaystyle \text{m}{{\text{s}}^{-1}}.
(a) Find the maximum and minimum kinetic energy of the ball.
(b) If the ball had been projected vertically upwards what would be the minimum kinetic energy of the ball?
Solution
(a) The kinetic energy is at a maximum when the velocity is 16 \displaystyle \text{m}{{\text{s}}^{-1}}.
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}
The kinetic energy is at a minimum when the velocity is 6 \displaystyle \text{m}{{\text{s}}^{-1}}.
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}
(b) If the ball was projected vertically, it would have a velocity of zero at its maximum height and hence the minimum kinetic energy would be zero.
A ball, of mass 20 grams, hits a wall travelling at 4 \displaystyle \text{m}{{\text{s}}^{-1}} and rebounds at 3 \displaystyle \text{m}{{\text{s}}^{-1}}. Find the energy lost during the bounce.
Solution
Find the kinetic energy before the bounce:
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}
Find the kinetic energy after the bounce:
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}
The loss of energy can then be calculated:
\displaystyle \begin{align}
& \text{Energy Lost }=0\textrm{.}16-0\textrm{.}09 \\
& =0\textrm{.}07\text{ J}
\end{align}
A roller coaster has carriages which are modelled as particles of mass 500 kg. A carriage starts at A with speed 12 \displaystyle \text{m}{{\text{s}}^{-1}}. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points.
Solution
Find the total energy of the carriage at A.
\displaystyle \begin{align}
& \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\
& =500\times 9\textrm{.}8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\
& =4900+36000 \\
& =40900\text{ J}
\end{align}
At the point B:
\displaystyle \begin{align}
& 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\
& \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\
\end{align}
\displaystyle \begin{align} & 16400=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}
At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated.
\displaystyle \begin{align}
& 40900=\frac{1}{2}\times 500{{v}^{2}} \\
& v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\
\end{align}
At the point D:
\displaystyle \begin{align}
& 40900=500\times 9\textrm{.}8\times 3+\text{KE} \\
& \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\
\end{align}
\displaystyle \begin{align} & 26200=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{26200}{250}}=10\textrm{.}2\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}
A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m. (a) Find the speed of the jumper when the rope first becomes taut. (b) Find the elastic potential energy stored in the rope, when it is fully stretched.
Solution
(a) When the rope becomes taut the bungee jumper has fallen 40 m. The potential energy lost will be equal to the kinetic energy.
\displaystyle \begin{align}
& 60\times 9\textrm{.}8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\
& v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\
\end{align}
(b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy.
\displaystyle \text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}