14. Moments and equilibrium
From Mechanics
Line 7: | Line 7: | ||
|} | |} | ||
- | + | == '''Key Points''' == | |
- | Key Points | + | |
'''In equilibrium''': | '''In equilibrium''': | ||
Line 14: | Line 13: | ||
• The resultant force on a body must be zero. | • The resultant force on a body must be zero. | ||
- | ''' | + | '''and''' |
• The resultant moment on a body must be zero. | • The resultant moment on a body must be zero. | ||
Line 26: | Line 25: | ||
Find the tension in each rope. | Find the tension in each rope. | ||
- | |||
'''Solution''' | '''Solution''' | ||
Line 40: | Line 38: | ||
& {{T}_{2}}=\frac{3\times 588}{5}=352\textrm{.}8=353\text{ N (to 3sf)} \\ | & {{T}_{2}}=\frac{3\times 588}{5}=352\textrm{.}8=353\text{ N (to 3sf)} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Take moments about the point where T2 acts to give: | Take moments about the point where T2 acts to give: | ||
- | + | ||
- | + | ||
<math>\begin{align} | <math>\begin{align} | ||
& 5\times {{T}_{1}}=2\times 588 \\ | & 5\times {{T}_{1}}=2\times 588 \\ | ||
& {{T}_{1}}=\frac{2\times 588}{5}=235\textrm{.}2=235\text{ N (to 3sf)} \\ | & {{T}_{1}}=\frac{2\times 588}{5}=235\textrm{.}2=235\text{ N (to 3sf)} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Finally for vertical equilibrium we require | Finally for vertical equilibrium we require | ||
<math>{{T}_{1}}+{{T}_{2}}=588</math> | <math>{{T}_{1}}+{{T}_{2}}=588</math> | ||
- | ,which can be used to check the tensions. In is the case we have: | + | , which can be used to check the tensions. In is the case we have: |
<math>352\textrm{.}8+235\textrm{.}2=588</math> | <math>352\textrm{.}8+235\textrm{.}2=588</math> | ||
- | |||
- | |||
Line 67: | Line 60: | ||
Find the maximum mass that could be placed at either end of the beam if it is to remain in equilibrium. | Find the maximum mass that could be placed at either end of the beam if it is to remain in equilibrium. | ||
- | |||
'''Solution''' | '''Solution''' | ||
Line 76: | Line 68: | ||
Taking moments about the point where R1 acts gives: | Taking moments about the point where R1 acts gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 82: | Line 73: | ||
& {{R}_{2}}=\frac{1\textrm{.}5\times 490}{2}=367\textrm{.}5=368\text{ N (to 3sf)} \\ | & {{R}_{2}}=\frac{1\textrm{.}5\times 490}{2}=367\textrm{.}5=368\text{ N (to 3sf)} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Taking moments about the point where R2 acts gives: | Taking moments about the point where R2 acts gives: | ||
- | + | ||
- | + | ||
<math>\begin{align} | <math>\begin{align} | ||
& 2\times {{R}_{1}}=0\textrm{.}5\times 490 \\ | & 2\times {{R}_{1}}=0\textrm{.}5\times 490 \\ | ||
& {{R}_{1}}=\frac{0\textrm{.}5\times 490}{2}=122\textrm{.}5=123\text{ N (to 3sf)} \\ | & {{R}_{1}}=\frac{0\textrm{.}5\times 490}{2}=122\textrm{.}5=123\text{ N (to 3sf)} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
For vertical equilibrium we require | For vertical equilibrium we require | ||
Line 98: | Line 86: | ||
<math>367\textrm{.}5+122\textrm{.}5=490</math> | <math>367\textrm{.}5+122\textrm{.}5=490</math> | ||
- | |||
First consider the greatest mass that can be placed at the left hand end of the beam. The diagram below shows the extra force that must now be considered. When the maximum possible mass is used, | First consider the greatest mass that can be placed at the left hand end of the beam. The diagram below shows the extra force that must now be considered. When the maximum possible mass is used, | ||
Line 107: | Line 94: | ||
Taking moments about the point where R1 acts gives: | Taking moments about the point where R1 acts gives: | ||
- | + | ||
- | + | ||
<math>\begin{align} | <math>\begin{align} | ||
& 1\times mg=1\textrm{.}5\times 490 \\ | & 1\times mg=1\textrm{.}5\times 490 \\ | ||
& m=\frac{1\textrm{.}5\times 490}{9\textrm{.}8}=75\text{ kg} \\ | & m=\frac{1\textrm{.}5\times 490}{9\textrm{.}8}=75\text{ kg} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Similarly for a mass placed at the right hand end of the beam: | Similarly for a mass placed at the right hand end of the beam: | ||
Line 123: | Line 108: | ||
& m=\frac{0\textrm{.}5\times 490}{2g}=12\textrm{.}5\text{ kg} \\ | & m=\frac{0\textrm{.}5\times 490}{2g}=12\textrm{.}5\text{ kg} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Hence the greatest mass that can be placed at either end of the beam | Hence the greatest mass that can be placed at either end of the beam | ||
Line 132: | Line 116: | ||
A ladder, of length 3 m and mass 20 kg, leans against a smooth, vertical wall so that the angle between the horizontal ground and the ladder is 60<math>{}^\circ </math>. | A ladder, of length 3 m and mass 20 kg, leans against a smooth, vertical wall so that the angle between the horizontal ground and the ladder is 60<math>{}^\circ </math>. | ||
- | + | ||
- | + | a) Find the magnitude of the friction and normal reaction forces that act on the ladder, if it is in equilibrium. | |
+ | |||
+ | b) Find the minimum value of the coefficient of friction between the ladder and the ground. | ||
Line 142: | Line 128: | ||
[[Image:E14.3fig1.GIF]] | [[Image:E14.3fig1.GIF]] | ||
- | + | a) Considering the horizontal forces gives: | |
- | Considering the horizontal forces gives: | + | |
- | + | ||
- | + | ||
<math>F=S</math> | <math>F=S</math> | ||
- | |||
Considering the vertical forces gives: | Considering the vertical forces gives: | ||
- | + | ||
- | + | ||
<math>R=196</math> | <math>R=196</math> | ||
- | |||
Taking moment about the base of the ladder gives: | Taking moment about the base of the ladder gives: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 162: | Line 142: | ||
& S=\frac{196\times 1\textrm{.}5\cos 60{}^\circ }{3\sin 60{}^\circ }=\frac{196\times \cos 60{}^\circ }{2\sin 60{}^\circ }=\frac{196}{2\tan 60{}^\circ }=56\textrm{.}6\text{ N (to 3 sf)} \\ | & S=\frac{196\times 1\textrm{.}5\cos 60{}^\circ }{3\sin 60{}^\circ }=\frac{196\times \cos 60{}^\circ }{2\sin 60{}^\circ }=\frac{196}{2\tan 60{}^\circ }=56\textrm{.}6\text{ N (to 3 sf)} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
But since | But since | ||
<math>F=S</math> | <math>F=S</math> | ||
- | , the friction force has magnitude 56\textrm{.}6 N. | + | , the friction force has magnitude <math>56\textrm{.}6 \text{ N} </math>. |
- | + | b) Using the friction inequality, | |
- | + | ||
- | Using the friction inequality, | + | |
<math>F\le \mu R</math> | <math>F\le \mu R</math> | ||
gives: | gives: | ||
- | + | ||
- | + | ||
- | + | ||
<math>\begin{align} | <math>\begin{align} | ||
& \frac{196}{2\tan 60{}^\circ }\le \mu \times 196 \\ | & \frac{196}{2\tan 60{}^\circ }\le \mu \times 196 \\ |
Revision as of 10:56, 17 February 2010
Theory | Exercises |
Key Points
In equilibrium:
• The resultant force on a body must be zero.
and
• The resultant moment on a body must be zero.
A uniform beam has length 8 m and mass 60 kg. It is suspended by two ropes, as shown in the diagram below.
Find the tension in each rope.
Solution
The diagram shows the forces acting on the beam.
Take moments about the point where T1 acts to give:
\displaystyle \begin{align} & 5\times {{T}_{2}}=3\times 588 \\ & {{T}_{2}}=\frac{3\times 588}{5}=352\textrm{.}8=353\text{ N (to 3sf)} \\ \end{align}
Take moments about the point where T2 acts to give:
\displaystyle \begin{align} & 5\times {{T}_{1}}=2\times 588 \\ & {{T}_{1}}=\frac{2\times 588}{5}=235\textrm{.}2=235\text{ N (to 3sf)} \\ \end{align}
Finally for vertical equilibrium we require \displaystyle {{T}_{1}}+{{T}_{2}}=588 , which can be used to check the tensions. In is the case we have:
\displaystyle 352\textrm{.}8+235\textrm{.}2=588
A beam, of mass 50 kg and length 5 m, rests on two supports as shown in the diagram. Find the magnitude of the reaction force exerted by each support.
Find the maximum mass that could be placed at either end of the beam if it is to remain in equilibrium.
Solution
The diagram shows the forces acting on the beam.
Taking moments about the point where R1 acts gives:
\displaystyle \begin{align} & 2\times {{R}_{2}}=1\textrm{.}5\times 490 \\ & {{R}_{2}}=\frac{1\textrm{.}5\times 490}{2}=367\textrm{.}5=368\text{ N (to 3sf)} \\ \end{align}
Taking moments about the point where R2 acts gives:
\displaystyle \begin{align} & 2\times {{R}_{1}}=0\textrm{.}5\times 490 \\ & {{R}_{1}}=\frac{0\textrm{.}5\times 490}{2}=122\textrm{.}5=123\text{ N (to 3sf)} \\ \end{align}
For vertical equilibrium we require \displaystyle {{R}_{1}}+{{R}_{2}}=490 , which can be used to check the tensions. In is the case we have:
\displaystyle 367\textrm{.}5+122\textrm{.}5=490
First consider the greatest mass that can be placed at the left hand end of the beam. The diagram below shows the extra force that must now be considered. When the maximum possible mass is used, \displaystyle {{R}_{2}}=0 .
Taking moments about the point where R1 acts gives:
\displaystyle \begin{align} & 1\times mg=1\textrm{.}5\times 490 \\ & m=\frac{1\textrm{.}5\times 490}{9\textrm{.}8}=75\text{ kg} \\ \end{align}
Similarly for a mass placed at the right hand end of the beam:
\displaystyle \begin{align} & 2\times mg=0\textrm{.}5\times 490 \\ & m=\frac{0\textrm{.}5\times 490}{2g}=12\textrm{.}5\text{ kg} \\ \end{align}
Hence the greatest mass that can be placed at either end of the beam is 12.5 kg.
A ladder, of length 3 m and mass 20 kg, leans against a smooth, vertical wall so that the angle between the horizontal ground and the ladder is 60\displaystyle {}^\circ .
a) Find the magnitude of the friction and normal reaction forces that act on the ladder, if it is in equilibrium.
b) Find the minimum value of the coefficient of friction between the ladder and the ground.
Solution
The diagram shows the forces acting on the ladder
a) Considering the horizontal forces gives:
\displaystyle F=S
Considering the vertical forces gives:
\displaystyle R=196
Taking moment about the base of the ladder gives:
\displaystyle \begin{align} & 196\times 1\textrm{.}5\cos 60{}^\circ =S\times 3\sin 60{}^\circ \\ & S=\frac{196\times 1\textrm{.}5\cos 60{}^\circ }{3\sin 60{}^\circ }=\frac{196\times \cos 60{}^\circ }{2\sin 60{}^\circ }=\frac{196}{2\tan 60{}^\circ }=56\textrm{.}6\text{ N (to 3 sf)} \\ \end{align}
But since
\displaystyle F=S , the friction force has magnitude \displaystyle 56\textrm{.}6 \text{ N} .
b) Using the friction inequality,
\displaystyle F\le \mu R gives:
\displaystyle \begin{align} & \frac{196}{2\tan 60{}^\circ }\le \mu \times 196 \\ & \mu \ge \frac{1}{2\tan 60{}^\circ } \\ & \mu \ge 0\textrm{.}289\text{ (to 3sf)} \\ \end{align}