13. Moments
From Mechanics
(Difference between revisions)
m |
|||
Line 60: | Line 60: | ||
|- | |- | ||
|8 N | |8 N | ||
- | |valign="top"| <math>-8\times 1.2=-9.6</math> | + | |valign="top"| <math>-8\times 1\textrm{.}2=-9\textrm{.}6</math> |
|- | |- | ||
Line 69: | Line 69: | ||
|- | |- | ||
|6 N | |6 N | ||
- | | valign="top"| <math>-6\times 0.5=-3</math> | + | | valign="top"| <math>-6\times 0\textrm{.}5=-3</math> |
|- | |- | ||
|5 N | |5 N | ||
- | | valign="top"| <math>5\times 1.2=6</math> | + | | valign="top"| <math>5\times 1\textrm{.}2=6</math> |
|- | |- | ||
|4 N | |4 N | ||
- | | valign="top"| <math>4\times 0.5=2</math> | + | | valign="top"| <math>4\times 0\textrm{.}5=2</math> |
|- | |- | ||
|Total Moment | |Total Moment | ||
- | | valign="top"| <math>0-9.6+0-3+6+2=-4.6\text{ Nm}</math> | + | | valign="top"| <math>0-9\textrm{.}6+0-3+6+2=-4\textrm{.}6\text{ Nm}</math> |
|} | |} |
Revision as of 09:39, 23 September 2009
Theory | Exercises |
Key Points
The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O.
\displaystyle \text{Moment }=Fd
\displaystyle \text{Moment }=Fd\sin \theta
Clockwise moments are negative.
Anti-clockwise moments are positive.
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
Solution
Force | Moment |
5N at O | \displaystyle 5\times 0=0 |
8 N | \displaystyle -8\times 1\textrm{.}2=-9\textrm{.}6 |
7 N | \displaystyle 7\times 0=0 |
6 N | \displaystyle -6\times 0\textrm{.}5=-3 |
5 N | \displaystyle 5\times 1\textrm{.}2=6 |
4 N | \displaystyle 4\times 0\textrm{.}5=2 |
Total Moment | \displaystyle 0-9\textrm{.}6+0-3+6+2=-4\textrm{.}6\text{ Nm} |