13. Moments
From Mechanics
(Difference between revisions)
m |
|||
Line 29: | Line 29: | ||
- | Example 13.1 | + | |
+ | '''[[Example 13.1]]''' | ||
[[Image:ex13.1whole.GIF]] | [[Image:ex13.1whole.GIF]] | ||
Line 37: | Line 38: | ||
- | Example 13.2 | + | '''[[Example 13.2]]''' |
[[Image:ex13.2.GIF]] | [[Image:ex13.2.GIF]] | ||
- | Example 13.3 | + | |
+ | '''[[Example 13.3]]''' | ||
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O. | For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O. | ||
Line 48: | Line 50: | ||
[[Image:ex13.3.GIF]] | [[Image:ex13.3.GIF]] | ||
- | Solution | + | '''Solution''' |
{| width="100%" cellspacing="10px" align="center" | {| width="100%" cellspacing="10px" align="center" |
Revision as of 11:14, 18 September 2009
Theory | Exercises |
Key Points
The moment of the force about the point O is the product of the force and the perpendicular distance to the line of action of the force from O.
\displaystyle \text{Moment }=Fd
\displaystyle \text{Moment }=Fd\sin \theta
Clockwise moments are negative.
Anti-clockwise moments are positive.
For the rectangular lamina shown below, find the total moment of the forces acting, about the corner marked O.
Solution
Force | Moment |
5N at O | \displaystyle 5\times 0=0 |
8 N | \displaystyle -8\times 1.2=-9.6 |
7 N | \displaystyle 7\times 0=0 |
6 N | \displaystyle -6\times 0.5=-3 |
5 N | \displaystyle 5\times 1.2=6 |
4 N | \displaystyle 4\times 0.5=2 |
Total Moment | \displaystyle 0-9.6+0-3+6+2=-4.6\text{ Nm} |