Solution 19.8b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: The expression for the velocity <math>\mathbf{v}</math> was obtained in part a), <math>\begin{align} & \mathbf{r}=\int{\mathbf{v}dt} \\ & \\ & =\left( 40t+{{d}_{1}} \right)\mathbf{i}+\...)
Current revision (17:55, 27 March 2011) (edit) (undo)
 
Line 8: Line 8:
& t=0,\ \mathbf{r}=400\mathbf{j}\ \Rightarrow \ {{d}_{1}}=0,\ {{d}_{2}}=400 \\
& t=0,\ \mathbf{r}=400\mathbf{j}\ \Rightarrow \ {{d}_{1}}=0,\ {{d}_{2}}=400 \\
& \\
& \\
-
& \mathbf{r}=\left( 40t \right)\mathbf{i}+\left( -2t+400 \right)\mathbf{j}
+
& \mathbf{r}=\left( 40t \right)\mathbf{i}+\left( {-{t}^{2}}+400 \right)\mathbf{j}
\end{align}</math>
\end{align}</math>

Current revision

The expression for the velocity \displaystyle \mathbf{v} was obtained in part a),

\displaystyle \begin{align} & \mathbf{r}=\int{\mathbf{v}dt} \\ & \\ & =\left( 40t+{{d}_{1}} \right)\mathbf{i}+\left( -{{t}^{2}}+{{d}_{2}} \right)\mathbf{j} \\ & \\ & t=0,\ \mathbf{r}=400\mathbf{j}\ \Rightarrow \ {{d}_{1}}=0,\ {{d}_{2}}=400 \\ & \\ & \mathbf{r}=\left( 40t \right)\mathbf{i}+\left( {-{t}^{2}}+400 \right)\mathbf{j} \end{align}