Solution 19.8b
From Mechanics
(Difference between revisions)
(New page: The expression for the velocity <math>\mathbf{v}</math> was obtained in part a), <math>\begin{align} & \mathbf{r}=\int{\mathbf{v}dt} \\ & \\ & =\left( 40t+{{d}_{1}} \right)\mathbf{i}+\...) |
|||
Line 8: | Line 8: | ||
& t=0,\ \mathbf{r}=400\mathbf{j}\ \Rightarrow \ {{d}_{1}}=0,\ {{d}_{2}}=400 \\ | & t=0,\ \mathbf{r}=400\mathbf{j}\ \Rightarrow \ {{d}_{1}}=0,\ {{d}_{2}}=400 \\ | ||
& \\ | & \\ | ||
- | & \mathbf{r}=\left( 40t \right)\mathbf{i}+\left( - | + | & \mathbf{r}=\left( 40t \right)\mathbf{i}+\left( {-{t}^{2}}+400 \right)\mathbf{j} |
\end{align}</math> | \end{align}</math> |
Current revision
The expression for the velocity \displaystyle \mathbf{v} was obtained in part a),
\displaystyle \begin{align} & \mathbf{r}=\int{\mathbf{v}dt} \\ & \\ & =\left( 40t+{{d}_{1}} \right)\mathbf{i}+\left( -{{t}^{2}}+{{d}_{2}} \right)\mathbf{j} \\ & \\ & t=0,\ \mathbf{r}=400\mathbf{j}\ \Rightarrow \ {{d}_{1}}=0,\ {{d}_{2}}=400 \\ & \\ & \mathbf{r}=\left( 40t \right)\mathbf{i}+\left( {-{t}^{2}}+400 \right)\mathbf{j} \end{align}