Solution 19.6b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>\begin{align} & s=\int_{0}^{10}{\left( 3{{t}^{2}}+2t+5 \right)}dt \\ & \\ & =\left[ {{t}^{3}}+{{t}^{2}}+5t \right]_{0}^{10} \\ & \\ & =\left( {{10}^{3}}+{{10}^{2}}+5\times 10 \...)
Current revision (15:57, 11 October 2010) (edit) (undo)
(New page: <math>\begin{align} & s=\int_{0}^{10}{\left( 3{{t}^{2}}+2t+5 \right)}dt \\ & \\ & =\left[ {{t}^{3}}+{{t}^{2}}+5t \right]_{0}^{10} \\ & \\ & =\left( {{10}^{3}}+{{10}^{2}}+5\times 10 \...)
 

Current revision

\displaystyle \begin{align} & s=\int_{0}^{10}{\left( 3{{t}^{2}}+2t+5 \right)}dt \\ & \\ & =\left[ {{t}^{3}}+{{t}^{2}}+5t \right]_{0}^{10} \\ & \\ & =\left( {{10}^{3}}+{{10}^{2}}+5\times 10 \right)-0 \\ & \\ & =1150\text{ m} \end{align}