Solution 19.6b
From Mechanics
(Difference between revisions)
(New page: <math>\begin{align} & s=\int_{0}^{10}{\left( 3{{t}^{2}}+2t+5 \right)}dt \\ & \\ & =\left[ {{t}^{3}}+{{t}^{2}}+5t \right]_{0}^{10} \\ & \\ & =\left( {{10}^{3}}+{{10}^{2}}+5\times 10 \...) |
(New page: <math>\begin{align} & s=\int_{0}^{10}{\left( 3{{t}^{2}}+2t+5 \right)}dt \\ & \\ & =\left[ {{t}^{3}}+{{t}^{2}}+5t \right]_{0}^{10} \\ & \\ & =\left( {{10}^{3}}+{{10}^{2}}+5\times 10 \...) |
Current revision
\displaystyle \begin{align} & s=\int_{0}^{10}{\left( 3{{t}^{2}}+2t+5 \right)}dt \\ & \\ & =\left[ {{t}^{3}}+{{t}^{2}}+5t \right]_{0}^{10} \\ & \\ & =\left( {{10}^{3}}+{{10}^{2}}+5\times 10 \right)-0 \\ & \\ & =1150\text{ m} \end{align}