Solution 19.4c
From Mechanics
(Difference between revisions)
(New page: Using the result from part b) for the velocity, <math>\begin{align} & s(20)=\int_{0}^{20}{v}dt \\ & \\ & =\int_{0}^{20}{\left( \frac{{{t}^{2}}}{5}+8 \right)dt} \\ & \\ & =\left[ \fr...) |
(New page: Using the result from part b) for the velocity, <math>\begin{align} & s(20)=\int_{0}^{20}{v}dt \\ & \\ & =\int_{0}^{20}{\left( \frac{{{t}^{2}}}{5}+8 \right)dt} \\ & \\ & =\left[ \fr...) |
Current revision
Using the result from part b) for the velocity,
\displaystyle \begin{align} & s(20)=\int_{0}^{20}{v}dt \\ & \\ & =\int_{0}^{20}{\left( \frac{{{t}^{2}}}{5}+8 \right)dt} \\ & \\ & =\left[ \frac{{{t}^{3}}}{15}+8t \right]_{0}^{20} \\ & \\ & =\left( \frac{{{20}^{3}}}{15}+8\times 20 \right)-0 \\ & \\ & =693\text{ m} \end{align}