Solution 18.8b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: <math>\begin{align} & \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{4-\frac{4t}{5...)
Current revision (17:17, 27 March 2011) (edit) (undo)
 
Line 1: Line 1:
<math>\begin{align}
<math>\begin{align}
-
& \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{4-\frac{4t}{5}+\frac{{{t}^{2}}}{25}} \\
+
& \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{8-\frac{4t}{5}+\frac{{{t}^{2}}}{25}} \\
\end{align}</math>
\end{align}</math>

Current revision

\displaystyle \begin{align} & \mathbf{v}=\frac{d\mathbf{r}}{dt}=\left( 2-\frac{t}{5} \right)\mathbf{i}+2\mathbf{j} \\ & v=\sqrt{{{\left( 2-\frac{t}{5} \right)}^{2}}+{{2}^{2}}}=\sqrt{8-\frac{4t}{5}+\frac{{{t}^{2}}}{25}} \\ \end{align}