Solution 7.4c

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: We insert <math>t=0\ \text{s}</math> in the expression for the position vector to find the point where the frisby waqs thrown from. <math>\begin{align} & \mathbf{r}=\left( 5\times 0-{{0...)
Line 9: Line 9:
& =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\
& =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\
\end{align}</math>
\end{align}</math>
 +
 +
The point where the frisby was thrown is the origin. This is obtained by putting
 +
<math>t=0</math>
 +
in the expression for
 +
<math>\mathbf{r}</math>
 +
giving <math>\mathbf{r} =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}</math>.

Revision as of 14:42, 14 May 2010

We insert \displaystyle t=0\ \text{s} in the expression for the position vector to find the point where the frisby waqs thrown from.


\displaystyle \begin{align} & \mathbf{r}=\left( 5\times 0-{{0}^{2}} \right)\mathbf{i}+\left( 7\times 0 \right)\mathbf{j}+0\mathbf{k} \\ & \\ & =-24\mathbf{i}+56\mathbf{j}+0\mathbf{k}\ \text{m} \\ \end{align}

The point where the frisby was thrown is the origin. This is obtained by putting \displaystyle t=0 in the expression for \displaystyle \mathbf{r} giving \displaystyle \mathbf{r} =0\mathbf{i}+0\mathbf{j}+0\mathbf{k}\ \text{m}.