Solution 6.8b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
Current revision (17:27, 11 May 2010) (edit) (undo)
 
Line 4: Line 4:
-
<math>s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=37 \textrm{.}5\ \text{m}</math>
+
<math>s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=3\textrm{.}75\ \text{m}</math>

Current revision

We investigate the distance after \displaystyle 10\ \text{s}.

Using \displaystyle s=ut+\frac{1}{2}a{{t}^{\ 2}} gives


\displaystyle s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=3\textrm{.}75\ \text{m}