Solution 6.8b

From Mechanics

(Difference between revisions)
Jump to: navigation, search
(New page: We investigate the distance after <math>10\ \text{s}</math>.Using <math>s=ut+\frac{1}{2}a{{t}^{\ 2}}</math> gives <math>s=0+\frac{1}{2}\times \left( 0.075 \right)\times {{10}^{2}}</math>)
Line 1: Line 1:
-
We investigate the distance after <math>10\ \text{s}</math>.Using <math>s=ut+\frac{1}{2}a{{t}^{\ 2}}</math> gives
+
We investigate the distance after <math>10\ \text{s}</math>.
 +
Using <math>s=ut+\frac{1}{2}a{{t}^{\ 2}}</math> gives
-
<math>s=0+\frac{1}{2}\times \left( 0.075 \right)\times {{10}^{2}}</math>
+
 
 +
<math>s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=37 \textrm{.}5\ \text{m}</math>

Revision as of 15:09, 10 April 2010

We investigate the distance after \displaystyle 10\ \text{s}.

Using \displaystyle s=ut+\frac{1}{2}a{{t}^{\ 2}} gives


\displaystyle s=0+\frac{1}{2}\times \left( 0 \textrm{.}075 \right)\times {{10}^{2}}=37 \textrm{.}5\ \text{m}