20. Circular Motion
From Mechanics
(4 intermediate revisions not shown.) | |||
Line 4: | Line 4: | ||
{{Selected tab|[[20. Circular Motion|Theory]]}} | {{Selected tab|[[20. Circular Motion|Theory]]}} | ||
{{Not selected tab|[[20. Exercises|Exercises]]}} | {{Not selected tab|[[20. Exercises|Exercises]]}} | ||
+ | {{Not selected tab|[[20. Video|Video]]}} | ||
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
- | + | == '''Key Points''' == | |
- | + | ||
- | Key Points | + | |
The diagram shows a particle | The diagram shows a particle | ||
Line 15: | Line 14: | ||
which moves with a circular path. | which moves with a circular path. | ||
+ | |||
+ | [[Image:T20.GIF]] | ||
The position vector for the particle is: | The position vector for the particle is: | ||
- | |||
<math>\mathbf{r}=\left( r\cos \theta \right)\mathbf{i}+\left( r\sin \theta \right)\mathbf{j}</math> | <math>\mathbf{r}=\left( r\cos \theta \right)\mathbf{i}+\left( r\sin \theta \right)\mathbf{j}</math> | ||
- | |||
The particle has angular speed | The particle has angular speed | ||
- | <math>\omega </math>. This means that the angle | + | <math>\omega </math> which we assume is constant. This means that the angle |
<math>AOP</math> | <math>AOP</math> | ||
will increase by | will increase by | ||
<math>\omega </math> | <math>\omega </math> | ||
radians every second. | radians every second. | ||
+ | |||
+ | Variable angular speed lies outside the scope of this course. | ||
If the particle is at | If the particle is at | ||
Line 36: | Line 37: | ||
<math>t</math>: | <math>t</math>: | ||
- | |||
<math>\mathbf{r}=\left( r\cos \omega t \right)\mathbf{i}+\left( r\sin \omega t \right)\mathbf{j}</math> | <math>\mathbf{r}=\left( r\cos \omega t \right)\mathbf{i}+\left( r\sin \omega t \right)\mathbf{j}</math> | ||
- | |||
Differentiating the position vector gives the velocity: | Differentiating the position vector gives the velocity: | ||
- | |||
<math>\mathbf{v}=\left( -r\omega \sin \omega t \right)\mathbf{i}+\left( r\omega \cos \omega t \right)\mathbf{j}</math> | <math>\mathbf{v}=\left( -r\omega \sin \omega t \right)\mathbf{i}+\left( r\omega \cos \omega t \right)\mathbf{j}</math> | ||
- | |||
The magnitude of the velocity can now be found: | The magnitude of the velocity can now be found: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& v=\sqrt{{{\left( -r\omega \sin \omega t \right)}^{2}}+{{\left( r\omega \cos \omega t \right)}^{2}}} \\ | & v=\sqrt{{{\left( -r\omega \sin \omega t \right)}^{2}}+{{\left( r\omega \cos \omega t \right)}^{2}}} \\ | ||
+ | & \\ | ||
& =\sqrt{{{r}^{2}}{{\omega }^{2}}({{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t)} \\ | & =\sqrt{{{r}^{2}}{{\omega }^{2}}({{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t)} \\ | ||
+ | & \\ | ||
& =\sqrt{{{r}^{2}}{{\omega }^{2}}} \\ | & =\sqrt{{{r}^{2}}{{\omega }^{2}}} \\ | ||
& =r\omega | & =r\omega | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
The particle has speed, | The particle has speed, | ||
Line 62: | Line 59: | ||
Differentiating the velocity gives the acceleration: | Differentiating the velocity gives the acceleration: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 69: | Line 65: | ||
& =-{{\omega }^{2}}\mathbf{r} | & =-{{\omega }^{2}}\mathbf{r} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
This shows that the acceleration has magnitude | This shows that the acceleration has magnitude | ||
Line 81: | Line 76: | ||
and | and | ||
<math>r.</math> | <math>r.</math> | ||
- | |||
- | |||
<math>a=r{{\left( \frac{v}{r} \right)}^{2}}=\frac{{{v}^{2}}}{r}</math> | <math>a=r{{\left( \frac{v}{r} \right)}^{2}}=\frac{{{v}^{2}}}{r}</math> | ||
+ | Using Newton’s second law, <math>F=ma</math>, gives the magnitude of the force needed to keep the particle in its circular path | ||
- | Example 20.1 | + | '''[[Example 20.1]]''' |
A coin of mass 30 grams is placed on a turntable which rotates at 90 rpm. The coin is at a distance of 10 cm from the centre of the turntable. Find the magnitude of the coefficient of friction between the coin and the turntable, if the coin is on the point of slipping. | A coin of mass 30 grams is placed on a turntable which rotates at 90 rpm. The coin is at a distance of 10 cm from the centre of the turntable. Find the magnitude of the coefficient of friction between the coin and the turntable, if the coin is on the point of slipping. | ||
- | Solution | + | '''Solution''' |
The diagram shows the forces acting on the particle, its weight, the normal reaction from the surface and the friction. | The diagram shows the forces acting on the particle, its weight, the normal reaction from the surface and the friction. | ||
- | + | [[Image:E20.1.GIF]] | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
The acceleration of | The acceleration of | ||
Line 108: | Line 97: | ||
The weight can be calculated first: | The weight can be calculated first: | ||
- | |||
- | <math>W=0.03\times 9.8=0.294\text{ N}</math> | + | <math>W=0\textrm{.}03\times 9\textrm{.}8=0\textrm{.}294\text{ N}</math> |
- | + | ||
As the vertical forces balance: | As the vertical forces balance: | ||
- | |||
- | <math>R=\text{ }0.\text{294 N}</math> | + | <math>R=\text{ }0\textrm{.}\text{294 N}</math> |
- | + | ||
The angular speed must be converted from rpm to | The angular speed must be converted from rpm to | ||
<math>\text{rad }{{\text{s}}^{-1}}</math>. | <math>\text{rad }{{\text{s}}^{-1}}</math>. | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 136: | Line 120: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & F=0.03\times 0.1\times {{(3\pi )}^{2}} \\ | + | & F=0\textrm{.}03\times 0\textrm{.}1\times {{(3\pi )}^{2}} \\ |
- | & =0.267\text{ N} | + | & =0\textrm{.}267\text{ N} |
\end{align}</math> | \end{align}</math> | ||
Line 145: | Line 129: | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 0.267=0.294\mu \\ | + | & 0\textrm{.}267=0\textrm{.}294\mu \\ |
- | & \mu =\frac{0.267}{0.294}=0.91\text{ (to 2sf)} \\ | + | & \mu =\frac{0\textrm{.}267}{0\textrm{.}294}=0\textrm{.}91\text{ (to 2sf)} \\ |
\end{align}</math> | \end{align}</math> | ||
- | Example 20.2 | + | '''[[Example 20.2]]''' |
A car of mass 1200 kg travels round a bend with radius 20 metres at a constant speed of 12 <math>\text{m}{{\text{s}}^{-1}}</math>. Find the magnitude of the friction force acting on the car. Find the minimum possible value of the coefficient of friction between the tyres and the road. | A car of mass 1200 kg travels round a bend with radius 20 metres at a constant speed of 12 <math>\text{m}{{\text{s}}^{-1}}</math>. Find the magnitude of the friction force acting on the car. Find the minimum possible value of the coefficient of friction between the tyres and the road. | ||
- | Solution | + | '''Solution''' |
The diagram shows the forces acting on the car. | The diagram shows the forces acting on the car. | ||
+ | |||
+ | [[Image:E20.2.GIF]] | ||
Using | Using | ||
Line 169: | Line 155: | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
Resolving vertically: | Resolving vertically: | ||
- | + | <math>R=1200\times 9\textrm{.}8=11760\text{ N}</math> | |
- | <math>R=1200\times 9.8=11760\text{ N}</math> | + | |
Then we can use the friction inequality | Then we can use the friction inequality | ||
<math>F\le mR</math>, to give, | <math>F\le mR</math>, to give, | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
Line 185: | Line 168: | ||
& \mu \ge \text{0}\text{.735 (to 3 sf)} \\ | & \mu \ge \text{0}\text{.735 (to 3 sf)} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
So the least value of | So the least value of | ||
<math>\mu </math> | <math>\mu </math> | ||
is 0.735. | is 0.735. |
Current revision
Theory | Exercises | Video |
Key Points
The diagram shows a particle \displaystyle P
which moves with a circular path.
The position vector for the particle is:
\displaystyle \mathbf{r}=\left( r\cos \theta \right)\mathbf{i}+\left( r\sin \theta \right)\mathbf{j}
The particle has angular speed \displaystyle \omega which we assume is constant. This means that the angle \displaystyle AOP will increase by \displaystyle \omega radians every second.
Variable angular speed lies outside the scope of this course.
If the particle is at \displaystyle A when \displaystyle t=0, then \displaystyle \theta =\omega t. Using this, the position vector can be written in terms of \displaystyle t:
\displaystyle \mathbf{r}=\left( r\cos \omega t \right)\mathbf{i}+\left( r\sin \omega t \right)\mathbf{j}
Differentiating the position vector gives the velocity:
\displaystyle \mathbf{v}=\left( -r\omega \sin \omega t \right)\mathbf{i}+\left( r\omega \cos \omega t \right)\mathbf{j}
The magnitude of the velocity can now be found:
\displaystyle \begin{align} & v=\sqrt{{{\left( -r\omega \sin \omega t \right)}^{2}}+{{\left( r\omega \cos \omega t \right)}^{2}}} \\ & \\ & =\sqrt{{{r}^{2}}{{\omega }^{2}}({{\sin }^{2}}\omega t+{{\cos }^{2}}\omega t)} \\ & \\ & =\sqrt{{{r}^{2}}{{\omega }^{2}}} \\ & =r\omega \end{align}
The particle has speed, \displaystyle v, which is given by \displaystyle v=r\omega . The velocity is directed along a tangent to the circle.
Differentiating the velocity gives the acceleration:
\displaystyle \begin{align} & \mathbf{a}=\left( -r{{\omega }^{2}}\cos \omega t \right)\mathbf{i}+\left( -r{{\omega }^{2}}\sin \omega t \right)\mathbf{j} \\ & =-\omega \left( \left( r\cos \omega t \right)\mathbf{i}+\left( r\sin \omega t \right)\mathbf{j} \right) \\ & =-{{\omega }^{2}}\mathbf{r} \end{align}
This shows that the acceleration has magnitude \displaystyle r{{\omega }^{2}} and is directed towards the centre of the circle. We can write \displaystyle a=r{{\omega }^{2}}, but since \displaystyle v=r\omega or \displaystyle \omega =\frac{v}{r}, the acceleration can be expressed in terms of \displaystyle v and \displaystyle r.
\displaystyle a=r{{\left( \frac{v}{r} \right)}^{2}}=\frac{{{v}^{2}}}{r}
Using Newton’s second law, \displaystyle F=ma, gives the magnitude of the force needed to keep the particle in its circular path
A coin of mass 30 grams is placed on a turntable which rotates at 90 rpm. The coin is at a distance of 10 cm from the centre of the turntable. Find the magnitude of the coefficient of friction between the coin and the turntable, if the coin is on the point of slipping.
Solution
The diagram shows the forces acting on the particle, its weight, the normal reaction from the surface and the friction.
The acceleration of \displaystyle P is horizontal, so the resultant of the vertical forces must be zero.
The weight can be calculated first:
\displaystyle W=0\textrm{.}03\times 9\textrm{.}8=0\textrm{.}294\text{ N}
As the vertical forces balance:
\displaystyle R=\text{ }0\textrm{.}\text{294 N}
The angular speed must be converted from rpm to \displaystyle \text{rad }{{\text{s}}^{-1}}.
\displaystyle \begin{align} & \omega =90\text{ rpm} \\ & =\frac{90\times 2\pi }{60}\text{ rad }{{\text{s}}^{\text{-1}}} \\ & =\text{3}\pi \text{ rad }{{\text{s}}^{\text{-1}}} \end{align}
Using \displaystyle F\text{ }=\text{ }ma in the radial direction with \displaystyle a=r{{\omega }^{2}} gives:
\displaystyle \begin{align} & F=0\textrm{.}03\times 0\textrm{.}1\times {{(3\pi )}^{2}} \\ & =0\textrm{.}267\text{ N} \end{align}
Using \displaystyle F=\mu R gives:
\displaystyle \begin{align} & 0\textrm{.}267=0\textrm{.}294\mu \\ & \mu =\frac{0\textrm{.}267}{0\textrm{.}294}=0\textrm{.}91\text{ (to 2sf)} \\ \end{align}
A car of mass 1200 kg travels round a bend with radius 20 metres at a constant speed of 12 \displaystyle \text{m}{{\text{s}}^{-1}}. Find the magnitude of the friction force acting on the car. Find the minimum possible value of the coefficient of friction between the tyres and the road.
Solution
The diagram shows the forces acting on the car.
Using \displaystyle F=ma radially, with \displaystyle a=\frac{{{v}^{2}}}{r} gives:
\displaystyle \begin{align} & F=1200\times \frac{{{12}^{2}}}{20}\text{ } \\ & =8640\text{ N} \end{align}
Resolving vertically:
\displaystyle R=1200\times 9\textrm{.}8=11760\text{ N}
Then we can use the friction inequality
\displaystyle F\le mR, to give,
\displaystyle \begin{align} & 8640\le \mu \times 11760 \\ & \mu \ge \frac{8640}{11760} \\ & \mu \ge \text{0}\text{.735 (to 3 sf)} \\ \end{align}
So the least value of \displaystyle \mu is 0.735.