17. Conservation of energy
From Mechanics
(7 intermediate revisions not shown.) | |||
Line 4: | Line 4: | ||
{{Selected tab|[[17. Conservation of energy|Theory]]}} | {{Selected tab|[[17. Conservation of energy|Theory]]}} | ||
{{Not selected tab|[[17. Exercises|Exercises]]}} | {{Not selected tab|[[17. Exercises|Exercises]]}} | ||
+ | {{Not selected tab|[[17. Video|Video]]}} | ||
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
+ | == '''Key Points''' == | ||
- | + | The following theory is for a particle of mass <math>m</math>, having a speed <math>v</math> and at a height <math>h</math> above the ground. | |
- | Kinetic Energy | + | Kinetic Energy: |
- | <math>\frac{1}{2}m{{v}^{2}}</math> | + | <math>\ \frac{1}{2}m{{v}^{2}}</math> |
+ | Potential Energy: <math>\ mgh</math> | ||
+ | |||
+ | Total energy is the sum of the potential and kinetic energy of the particle. | ||
+ | |||
+ | Energy lost due to friction = Work done against friction | ||
+ | |||
+ | If <math>F</math> is a constant friction force and <math>d</math> is the distance the particle moves, | ||
+ | |||
+ | Work done against friction: | ||
+ | <math>Fd</math> | ||
+ | |||
+ | Thus if there is no friction or friction is negligible the particle does not lose energy. In other words its energy is constant (conserved). | ||
+ | |||
+ | In the above, any force which resists motion is to be regarded as a frictional force. | ||
- | Potential Energy mgh | ||
- | Energy lost due to friction = Work Done Against Friction | ||
Line 23: | Line 37: | ||
A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 <math>\text{m}{{\text{s}}^{-1}}</math>. At its maximum height the ball travels at 6 <math>\text{m}{{\text{s}}^{-1}}</math>. | A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 <math>\text{m}{{\text{s}}^{-1}}</math>. At its maximum height the ball travels at 6 <math>\text{m}{{\text{s}}^{-1}}</math>. | ||
- | + | a) Find the maximum and minimum kinetic energy of the ball. | |
- | + | b) If the ball had been projected vertically upwards what would be the minimum kinetic energy of the ball? | |
'''Solution''' | '''Solution''' | ||
- | + | a) | |
The kinetic energy is at a maximum when the velocity is 16 <math>\text{m}{{\text{s}}^{-1}}</math>. | The kinetic energy is at a maximum when the velocity is 16 <math>\text{m}{{\text{s}}^{-1}}</math>. | ||
- | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}</math> | |
- | <math>\text{KE}=\frac{1}{2}\times 0.3\times {{16}^{2}}=38.4\text{ J}</math> | + | |
- | + | ||
The kinetic energy is at a minimum when the velocity is 6 <math>\text{m}{{\text{s}}^{-1}}</math>. | The kinetic energy is at a minimum when the velocity is 6 <math>\text{m}{{\text{s}}^{-1}}</math>. | ||
- | |||
- | <math>\text{KE}=\frac{1}{2}\times 0.3\times {{6}^{2}}=5.4\text{ J}</math> | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}</math> |
- | + | ||
- | + | b) If the ball was projected vertically, it would have a velocity of zero at its maximum height and hence the minimum kinetic energy would be zero. | |
Line 53: | Line 63: | ||
Find the kinetic energy before the bounce: | Find the kinetic energy before the bounce: | ||
- | |||
- | <math>\text{KE}=\frac{1}{2}\times 0.02\times {{4}^{2}}=0.16\text{ J}</math> | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}</math> |
- | + | ||
Find the kinetic energy after the bounce: | Find the kinetic energy after the bounce: | ||
- | + | ||
- | + | <math>\text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}</math> | |
- | <math>\text{KE}=\frac{1}{2}\times 0.02\times {{3}^{2}}=0.09\text{ J}</math> | + | |
- | + | ||
The loss of energy can then be calculated: | The loss of energy can then be calculated: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & \text{Energy Lost }=0.16-0.09 \\ | + | & \text{Energy Lost }=0\textrm{.}16-0\textrm{.}09 \\ |
- | & =0.07\text{ J} | + | & =0\textrm{.}07\text{ J} |
\end{align}</math> | \end{align}</math> | ||
+ | |||
'''[[Example 17.3]]''' | '''[[Example 17.3]]''' | ||
Line 76: | Line 82: | ||
A roller coaster has carriages which are modelled as particles of mass | A roller coaster has carriages which are modelled as particles of mass | ||
500 kg. A carriage starts at A with speed 12 <math>\text{m}{{\text{s}}^{-1}}</math>. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points. | 500 kg. A carriage starts at A with speed 12 <math>\text{m}{{\text{s}}^{-1}}</math>. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points. | ||
- | |||
- | |||
[[Image:E17.3.GIF]] | [[Image:E17.3.GIF]] | ||
- | |||
- | |||
- | |||
'''Solution''' | '''Solution''' | ||
Line 88: | Line 89: | ||
Find the total energy of the carriage at A. | Find the total energy of the carriage at A. | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\ | & \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\ | ||
- | & =500\times 9.8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\ | + | & =500\times 9\textrm{.}8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\ |
& =4900+36000 \\ | & =4900+36000 \\ | ||
& =40900\text{ J} | & =40900\text{ J} | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
At the point B: | At the point B: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & 40900=500\times 9.8\times 5+\text{KE} \\ | + | & 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\ |
& \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\ | & \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& 16400=\frac{1}{2}\times 500{{v}^{2}} \\ | & 16400=\frac{1}{2}\times 500{{v}^{2}} \\ | ||
- | & v=\sqrt{\frac{16400}{250}}=8.1\text{ m}{{\text{s}}^{\text{-1}}} \\ | + | & v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\ |
\end{align}</math> | \end{align}</math> | ||
- | |||
At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated. | At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated. | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& 40900=\frac{1}{2}\times 500{{v}^{2}} \\ | & 40900=\frac{1}{2}\times 500{{v}^{2}} \\ | ||
- | & v=\sqrt{\frac{40900}{250}}=12.8\text{ m}{{\text{s}}^{\text{-1}}} \\ | + | & v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\ |
\end{align}</math> | \end{align}</math> | ||
- | |||
At the point D: | At the point D: | ||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
- | & 40900=500\times 9.8\times 3+\text{KE} \\ | + | & 40900=500\times 9\textrm{.}8\times 3+\text{KE} \\ |
& \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\ | & \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | |||
- | |||
<math>\begin{align} | <math>\begin{align} | ||
& 26200=\frac{1}{2}\times 500{{v}^{2}} \\ | & 26200=\frac{1}{2}\times 500{{v}^{2}} \\ | ||
- | & v=\sqrt{\frac{26200}{250}}=10.2\text{ m}{{\text{s}}^{\text{-1}}} \\ | + | & v=\sqrt{\frac{26200}{250}}=10\textrm{.}2\text{ m}{{\text{s}}^{\text{-1}}} \\ |
\end{align}</math> | \end{align}</math> | ||
Line 141: | Line 131: | ||
A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m. | A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m. | ||
- | (a) Find the speed of the jumper when the rope first becomes taut. | ||
- | (b) Find the elastic potential energy stored in the rope, when it is fully stretched. | ||
- | + | a) Find the speed of the jumper when the rope first becomes taut. | |
- | + | b) Find the elastic potential energy stored in the rope, when it is fully stretched. | |
+ | '''Solution''' | ||
+ | |||
+ | a) When the rope becomes taut the bungee jumper has fallen 40 m. The potential energy lost will be equal to the kinetic energy. | ||
<math>\begin{align} | <math>\begin{align} | ||
- | & 60\times 9.8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\ | + | & 60\times 9\textrm{.}8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\ |
& v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\ | & v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\ | ||
\end{align}</math> | \end{align}</math> | ||
- | + | b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy. | |
- | + | ||
- | <math>\text{EPE }=60\times 9.8\times 60=35280\text{ J}</math> | + | <math>\text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}</math> |
Current revision
Theory | Exercises | Video |
Key Points
The following theory is for a particle of mass \displaystyle m, having a speed \displaystyle v and at a height \displaystyle h above the ground.
Kinetic Energy: \displaystyle \ \frac{1}{2}m{{v}^{2}}
Potential Energy: \displaystyle \ mgh
Total energy is the sum of the potential and kinetic energy of the particle.
Energy lost due to friction = Work done against friction
If \displaystyle F is a constant friction force and \displaystyle d is the distance the particle moves,
Work done against friction: \displaystyle Fd
Thus if there is no friction or friction is negligible the particle does not lose energy. In other words its energy is constant (conserved).
In the above, any force which resists motion is to be regarded as a frictional force.
A ball, of mass 300 grams, is hit from ground level, so that its initial speed is 16 \displaystyle \text{m}{{\text{s}}^{-1}}. At its maximum height the ball travels at 6 \displaystyle \text{m}{{\text{s}}^{-1}}.
a) Find the maximum and minimum kinetic energy of the ball.
b) If the ball had been projected vertically upwards what would be the minimum kinetic energy of the ball?
Solution
a) The kinetic energy is at a maximum when the velocity is 16 \displaystyle \text{m}{{\text{s}}^{-1}}.
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{16}^{2}}=38\textrm{.}4\text{ J}
The kinetic energy is at a minimum when the velocity is 6 \displaystyle \text{m}{{\text{s}}^{-1}}.
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}3\times {{6}^{2}}=5\textrm{.}4\text{ J}
b) If the ball was projected vertically, it would have a velocity of zero at its maximum height and hence the minimum kinetic energy would be zero.
A ball, of mass 20 grams, hits a wall travelling at 4 \displaystyle \text{m}{{\text{s}}^{-1}} and rebounds at 3 \displaystyle \text{m}{{\text{s}}^{-1}}. Find the energy lost during the bounce.
Solution
Find the kinetic energy before the bounce:
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{4}^{2}}=0\textrm{.}16\text{ J}
Find the kinetic energy after the bounce:
\displaystyle \text{KE}=\frac{1}{2}\times 0\textrm{.}02\times {{3}^{2}}=0\textrm{.}09\text{ J}
The loss of energy can then be calculated:
\displaystyle \begin{align} & \text{Energy Lost }=0\textrm{.}16-0\textrm{.}09 \\ & =0\textrm{.}07\text{ J} \end{align}
A roller coaster has carriages which are modelled as particles of mass 500 kg. A carriage starts at A with speed 12 \displaystyle \text{m}{{\text{s}}^{-1}}. It moves, as shown in the diagram, through the points B, C and D. Find the kinetic energy and speed of the carriage at each of these points.
Solution
Find the total energy of the carriage at A.
\displaystyle \begin{align} & \text{Total Energy}=mgh+\frac{1}{2}m{{v}^{2}} \\ & =500\times 9\textrm{.}8\times 1+\frac{1}{2}\times 500\times {{12}^{2}} \\ & =4900+36000 \\ & =40900\text{ J} \end{align}
At the point B:
\displaystyle \begin{align} & 40900=500\times 9\textrm{.}8\times 5+\text{KE} \\ & \text{KE}=\text{4090}0-\text{24500}=16400\text{ J} \\ \end{align}
\displaystyle \begin{align} & 16400=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{16400}{250}}=8\textrm{.}1\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}
At the point C there is no potential energy, so the kinetic energy is 40900 J. The speed can then be calculated.
\displaystyle \begin{align} & 40900=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{40900}{250}}=12\textrm{.}8\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}
At the point D:
\displaystyle \begin{align} & 40900=500\times 9\textrm{.}8\times 3+\text{KE} \\ & \text{KE}=\text{4090}0-\text{14700}=26200\text{ J} \\ \end{align}
\displaystyle \begin{align} & 26200=\frac{1}{2}\times 500{{v}^{2}} \\ & v=\sqrt{\frac{26200}{250}}=10\textrm{.}2\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}
A bungee jumper has mass 60 kg and uses a rope of length 40m. The jumper comes to rest after falling a distance of 60 m.
a) Find the speed of the jumper when the rope first becomes taut.
b) Find the elastic potential energy stored in the rope, when it is fully stretched.
Solution
a) When the rope becomes taut the bungee jumper has fallen 40 m. The potential energy lost will be equal to the kinetic energy.
\displaystyle \begin{align} & 60\times 9\textrm{.}8\times 40=\frac{1}{2}\times 60{{v}^{2}} \\ & v=\sqrt{\frac{23520}{30}}=28\text{ m}{{\text{s}}^{\text{-1}}} \\ \end{align}
b) At the lowest point all of the potential energy lost will be equal to the elastic potential energy.
\displaystyle \text{EPE }=60\times 9\textrm{.}8\times 60=35280\text{ J}